By Date

Sward, R., Philbrick, A., Morreale, J., Baird, C. J., & Gedan, K. (2023). Shrub expansion in maritime forest responding to sea level rise. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1167880 Cite
Wittyngham, S. S., Carey, J., & Johnson, D. S. (2023). Resource availability and plant age drive defense against herbivory in salt marshes. Oikos, 2023(8), e09672. https://doi.org/10.1111/oik.09672 Cite
Reeves, I. R. B., Moore, L. J., Valentine, K., Fagherazzi, S., & Kirwan, M. L. (2023). Sediment Exchange Across Coastal Barrier Landscapes Alters Ecosystem Extents. Geophysical Research Letters, 50(14), e2023GL103680. https://doi.org/10.1029/2023GL103680 Cite
Lang, S. E., Luis, K. M. A., Doney, S. C., Cronin-Golomb, O., & Castorani, M. C. N. (2023). Modeling Coastal Water Clarity Using Landsat-8 and Sentinel-2. Earth and Space Science, 10(7), e2022EA002579. https://doi.org/10.1029/2022EA002579 Cite
Hardison, S. B., McGlathery, K. J., & Castorani, M. C. N. (2023). Effects of seagrass restoration on coastal fish abundance and diversity. Conservation Biology, n/a(n/a), e14147. https://doi.org/10.1111/cobi.14147 Cite
Brahmey, E. (2023). Exploring Spatial and Temporal Differences Between High and Low Frequency Water Quality Data in Coastal Virginia (10.18130/99sn-hh38) [M.S., University of Virginia,]. https://doi.org/10.18130/99sn-hh38 Cite
Tedford, K. N., & Castorani, M. C. N. (2022). Meta-analysis reveals controls on oyster predation. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1055240 Cite
Chen, Y., & Kirwan, M. L. (2022). A phenology- and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sensing of Environment, 281, 113229. https://doi.org/10.1016/j.rse.2022.113229 Cite
Chen, Y., & Kirwan, M. L. (2022). Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nature Geoscience. https://doi.org/10.1038/s41561-022-01041-x Cite
Cheng, S. L., Tedford, K. N., Smith, R. S., Hardison, S., Cornish, M. R., & Castorani, M. C. N. (2022). Coastal Vegetation and Bathymetry Influence Blue Crab Abundance Across Spatial Scales. Estuaries and Coasts, 45(6), 1701–1715. https://doi.org/10.1007/s12237-021-01039-5 Cite
Tassone, S. J., Besterman, A. F., Buelo, C. D., Walter, J. A., & Pace, M. L. (2022). Co-occurrence of Aquatic Heatwaves with Atmospheric Heatwaves, Low Dissolved Oxygen, and Low pH Events in Estuarine Ecosystems. Estuaries and Coasts, 45(3), 707–720. https://doi.org/10.1007/s12237-021-01009-x Cite
Nordio, G., & Fagherazzi, S. (2022). Salinity increases with water table elevation at the boundary between salt marsh and forest. Journal of Hydrology, 608, 127576. https://doi.org/10.1016/j.jhydrol.2022.127576 Cite
Kottler, E. J., & Gedan, K. B. (2022). Sexual reproduction is light-limited as marsh grasses colonize maritime forest. American Journal of Botany, 109(4), 514–525. https://doi.org/10.1002/ajb2.1831 Cite
Wang, J., Dai, Z., Fagherazzi, S., Zhang, X., & Liu, X. (2022). Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta. Science of The Total Environment, 809, 152076. https://doi.org/10.1016/j.scitotenv.2021.152076 Cite
Smith, R. S., Hogan, S., Tedford, K. N., Lusk, B., Reidenbach, M. A., & Castorani, M. C. N. (2022). Long-term data reveal greater intertidal oyster biomass in predicted suitable habitat. Marine Ecology Progress Series, 683, 221–226. https://doi.org/10.3354/meps13949 Cite
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E., & Attard, K. M. (2022). Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann Rev Mar Sci, 14, 431–455. https://doi.org/10.1146/annurev-marine-042121-012329 Cite
Zhu, Q. (2022). Sediment Connectivity in the Coupled Tidal Flat-Seagrass-Marsh System [Ph.D, University of Virginia]. https://doi.org/10.18130/jssv-7037 Cite
Zhang, X., Wright, K., Passalacqua, P., Simard, M., & Fagherazzi, S. (2022). Improving Channel Hydrological Connectivity in Coastal Hydrodynamic Models With Remotely Sensed Channel Networks. Journal of Geophysical Research: Earth Surface, 127(3), e2021JF006294. https://doi.org/10.1029/2021JF006294 Cite
Xu, Y., Kalra, T. S., Ganju, N. K., & Fagherazzi, S. (2022). Modeling the Dynamics of Salt Marsh Development in Coastal Land Reclamation. Geophysical Research Letters, 49(6), e2021GL095559. https://doi.org/10.1029/2021GL095559 Cite
Wittyngham, S. S. (2022). Spartina Alterniflora Defense Against Herbivory (2691825988) [Ph.D., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fspartina-alterniflora-defense-against-herbivory%2Fdocview%2F2691825988%2Fse-2%3Faccountid%3D14678 Cite
Wang, J., Dai, Z., Fagherazzi, S., & Long, C. (2022). A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner: Results from a case study. Sedimentology, 69(4), 1626–1648. https://doi.org/10.1111/sed.12970 Cite
Walker, S. L., & Zinnert, J. (2022). Whole plant traits of coastal dune vegetation and implications for interactions with dune dynamics. Ecosphere, 13(5), e4065. https://doi.org/10.1002/ecs2.4065 Cite
Shoemaker, L. G., Hallett, L. M., Zhao, L., Reuman, D. C., Wang, S., Cottingham, K. L., Hobbs, R. J., Castorani, M. C. N., Downing, A. L., Dudney, J. C., Fey, S. B., Gherardi, L. A., Lany, N., Portales-Reyes, C., Rypel, A. L., Sheppard, L. W., Walter, J. A., & Suding, K. N. (2022). The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 103(4), e3650. https://doi.org/10.1002/ecy.3650 Cite
Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R., & Kirwan, M. L. (2022). Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Global Change Biology, 28(10), 3236–3245. https://doi.org/10.1111/gcb.16149 Cite
Reeves, I. R., Goldstein, E. B., Moore, L. J., & Zinnert, J. C. (2022). Exploring the impacts of shrub‐overwash feedbacks in coastal barrier systems with an ecological‐morphological model. Journal of Geophysical Research: Earth Surface, e2021JF006397. https://doi.org/10.1029/2021JF006397 Cite
Reed, D. C., Schmitt, R. J., Burd, A. B., Burkepile, D. E., Kominoski, J. S., McGlathery, K. J., Miller, R. J., Morris, J. T., & Zinnert, J. C. (2022). Responses of Coastal Ecosystems to Climate Change: Insights from Long-Term Ecological Research. BioScience, 72(9), 871–888. https://doi.org/10.1093/biosci/biac006 Cite
Nordio, G., & Fagherazzi, S. (2022). Storm Surge and Tidal Dissipation in Deltaic Wetlands Bordering a Main Channel. Journal of Geophysical Research: Oceans, 127(3), e2021JC017655. https://doi.org/10.1029/2021JC017655 Cite
Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2022). Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 7(4), 321–331. https://doi.org/10.1002/lol2.10262 Cite
Liu, Z., Gourgue, O., & Fagherazzi, S. (2022). Biotic and abiotic factors control the geomorphic characteristics of channel networks in salt marshes. Limnology and Oceanography, 67(1), 89–101. https://doi.org/10.1002/lno.11977 Cite
Juska, I. (2022). Examining Metabolism in Seagrass Meadows: Trends in Respiration and Non-Dissolved Gas Ebullition (10.18130/7g8x-x368) [M.S. Thesis, University of Virginia]. https://doi.org/10.18130/7g8x-x368 Cite
Johnson, D. S. (2022). Beautiful swimmers attack at low tide. Ecology, 103(10), e3787. https://doi.org/10.1002/ecy.3787 Cite
Johnson, D. S. (2022). Are amphipods Orchestia grillus (Bosc, 1802) (Amphipoda: Talitridae) infected with the trematode Levinseniella byrdi (Heard, 1968) drawn to the light? Journal of Crustacean Biology, 42(2). https://doi.org/10.1093/jcbiol/ruac017 Cite
Hogan, S., Murphy, E. A. K., Volaric, M. P., Castorani, M. C. N., Berg, P., & Reidenbach, M. A. (2022). Influence of oyster reefs on infauna and sediment spatial distributions within intertidal mudflats. Marine Ecology Progress Series, 686, 91–106. https://doi.org/10.3354/meps13983 Cite
Heller, E. L., Karpanty, S. M., Cohen, J. B., Catlin, D. H., Ritter, S. J., Truitt, B. R., & Fraser, J. D. (2022). Factors that affect migratory Western Atlantic red knots (Calidris canutus rufa) and their prey during spring staging on Virginia’s barrier islands. PLOS ONE, 17(7), e0270224. https://doi.org/10.1371/journal.pone.0270224 Cite
Gourgue, O., van Belzen, J., Schwarz, C., Vandenbruwaene, W., Vanlede, J., Belliard, J. P., Fagherazzi, S., Bouma, T. J., van de Koppel, J., & Temmerman, S. (2022). Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply. Earth Surf. Dynam., 10(3), 531–553. https://doi.org/10.5194/esurf-10-531-2022 Cite
Goetz, E. M. (2022). Invertebrates in a Migrating Salt Marsh (2710986615) [M.S., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Finvertebrates-migrating-salt-marsh%2Fdocview%2F2710986615%2Fse-2%3Faccountid%3D14678 Cite
Fenster, M., & Dominguez, R. (2022). Quantifying Coastal Storm Impacts Using a New Cumulative Storm Impact Index (CSII) Model: Application along the Virginia Coast, USA. Journal of Geophysical Research: Earth Surface, e2022JF006641. https://doi.org/10.1029/2022JF006641 Cite
Coleman, D. J., Schuerch, M., Temmerman, S., Guntenspergen, G., Smith, C. G., & Kirwan, M. L. (2022). Reconciling models and measurements of marsh vulnerability to sea level rise. Limnology and Oceanography Letters, 7(2), 140–149. https://doi.org/10.1002/lol2.10230 Cite
Brown, J. K., Moulton, A., & Zinnert, J. C. (2022). Plant community re-organization and increased productivity due to multi-year nutrient enrichment of a coastal grassland. PLOS ONE, 17(7), e0270798. https://doi.org/10.1371/journal.pone.0270798 Cite
Bieri, E. (2022). Evaluating coastal protection benefits of restored oyster reef designs [M.S., University of Virginia]. https://doi.org/10.18130/2b04-wz72 Cite
Smith, A. J., & Goetz, E. M. (2021). Climate change drives increased directional movement of landscape ecotones. Landscape Ecology, 36(11), 3105–3116. https://doi.org/10.1007/s10980-021-01314-7 Cite
Hogan, S., & Reidenbach, M. A. (2021). Quantifying Tradeoffs in Ecosystem Services Under Various Oyster Reef Restoration Designs. Estuaries and Coasts. https://doi.org/10.1007/s12237-021-01010-4 Cite
O’Brien, M., Smith, C. A., Sokol, E. R., Gries, C., Lany, N., Record, S., & Castorani, M. C. N. (2021). ecocomDP: A flexible data design pattern for ecological community survey data. Ecological Informatics, 64, 101374. https://doi.org/10.1016/j.ecoinf.2021.101374 Cite
Hogan, S., Wiberg, P. L., & Reidenbach, M. A. (2021). Utilizing airborne LiDAR data to quantify marsh edge morphology and the role of oyster reefs in mitigating marsh erosion. Marine Ecology Progress Series, 669, 17–31. https://doi.org/10.3354/meps13728 Cite
Huang, H., Tuley, P. A., Tu, C., Zinnert, J. C., Rodriguez-Iturbe, I., & D’Odorico, P. (2021). Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation. Communications Biology, 4(1), 745. https://doi.org/10.1038/s42003-021-02274-z Cite
Langston, A. K., Coleman, D. J., Jung, N. W., Shawler, J. L., Smith, A. J., Williams, B. L., Wittyngham, S. S., Chambers, R. M., Perry, J. E., & Kirwan, M. L. (2021). The Effect of Marsh Age on Ecosystem Function in a Rapidly Transgressing Marsh. Ecosystems. https://doi.org/10.1007/s10021-021-00652-6 Cite
Duran Vinent, O., Herbert, E. R., Coleman, D. J., Himmelstein, J. D., & Kirwan, M. L. (2021). Onset of runaway fragmentation of salt marshes. One Earth, 4(4), 506–516. https://doi.org/10.1016/j.oneear.2021.02.013 Cite
Liu, Z., Fagherazzi, S., Li, J., & Cui, B. (2021). Mismatch between watershed effects and local efforts constrains the success of coastal salt marsh vegetation restoration. Journal of Cleaner Production, 292, 126103. https://doi.org/10.1016/j.jclepro.2021.126103 Cite
Coleman, D. J., Rogers, K., Corbett, D. R., Owers, C. J., & Kirwan, M. L. (2021). The geomorphic impact of mangrove encroachment in an Australian salt marsh. Estuarine, Coastal and Shelf Science, 251, 107238. https://doi.org/10.1016/j.ecss.2021.107238 Cite
Herbert, E. R., Windham-Myers, L., & Kirwan, M. L. (2021). Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth, 4(3), 425–433. https://doi.org/10.1016/j.oneear.2021.02.011 Cite