By Date

Smith, R. S., Hogan, S., Tedford, K. N., Lusk, B., Reidenbach, M. A., & Castorani, M. C. N. (2022). Long-term data reveal greater intertidal oyster biomass in predicted suitable habitat. Marine Ecology Progress Series, 683, 221–226. https://doi.org/10.3354/meps13949 Cite
Hogan, S., Murphy, E. A. K., Volaric, M. P., Castorani, M. C. N., Berg, P., & Reidenbach, M. A. (2022). Influence of oyster reefs on infauna and sediment spatial distributions within intertidal mudflats. Marine Ecology Progress Series, 686, 91–106. https://doi.org/10.3354/meps13983 Cite
Smith, A. J., & Goetz, E. M. (2021). Climate change drives increased directional movement of landscape ecotones. Landscape Ecology, 36(11), 3105–3116. https://doi.org/10.1007/s10980-021-01314-7 Cite
Hogan, S., & Reidenbach, M. A. (2021). Quantifying Tradeoffs in Ecosystem Services Under Various Oyster Reef Restoration Designs. Estuaries and Coasts. https://doi.org/10.1007/s12237-021-01010-4 Cite
O’Brien, M., Smith, C. A., Sokol, E. R., Gries, C., Lany, N., Record, S., & Castorani, M. C. N. (2021). ecocomDP: A flexible data design pattern for ecological community survey data. Ecological Informatics, 64, 101374. https://doi.org/10.1016/j.ecoinf.2021.101374 Cite
Hogan, S., Wiberg, P. L., & Reidenbach, M. A. (2021). Utilizing airborne LiDAR data to quantify marsh edge morphology and the role of oyster reefs in mitigating marsh erosion. Marine Ecology Progress Series, 669, 17–31. https://doi.org/10.3354/meps13728 Cite
Huang, H., Tuley, P. A., Tu, C., Zinnert, J. C., Rodriguez-Iturbe, I., & D’Odorico, P. (2021). Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation. Communications Biology, 4(1), 745. https://doi.org/10.1038/s42003-021-02274-z Cite
Langston, A. K., Coleman, D. J., Jung, N. W., Shawler, J. L., Smith, A. J., Williams, B. L., Wittyngham, S. S., Chambers, R. M., Perry, J. E., & Kirwan, M. L. (2021). The Effect of Marsh Age on Ecosystem Function in a Rapidly Transgressing Marsh. Ecosystems. https://doi.org/10.1007/s10021-021-00652-6 Cite
Duran Vinent, O., Herbert, E. R., Coleman, D. J., Himmelstein, J. D., & Kirwan, M. L. (2021). Onset of runaway fragmentation of salt marshes. One Earth, 4(4), 506–516. https://doi.org/10.1016/j.oneear.2021.02.013 Cite
Liu, Z., Fagherazzi, S., Li, J., & Cui, B. (2021). Mismatch between watershed effects and local efforts constrains the success of coastal salt marsh vegetation restoration. Journal of Cleaner Production, 292, 126103. https://doi.org/10.1016/j.jclepro.2021.126103 Cite
Coleman, D. J., Rogers, K., Corbett, D. R., Owers, C. J., & Kirwan, M. L. (2021). The geomorphic impact of mangrove encroachment in an Australian salt marsh. Estuarine, Coastal and Shelf Science, 251, 107238. https://doi.org/10.1016/j.ecss.2021.107238 Cite
Herbert, E. R., Windham-Myers, L., & Kirwan, M. L. (2021). Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth, 4(3), 425–433. https://doi.org/10.1016/j.oneear.2021.02.011 Cite
Jin, S., Liu, Y., Fagherazzi, S., Mi, H., Qiao, G., Xu, W., Sun, C., Liu, Y., Zhao, B., & Fichot, C. G. (2021). River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method. Remote Sensing of Environment, 255, 112297. https://doi.org/10.1016/j.rse.2021.112297 Cite
Liu, Z., Fagherazzi, S., & Cui, B. (2021). Success of coastal wetlands restoration is driven by sediment availability. Communications Earth & Environment, 2(1), 44. https://doi.org/10.1038/s43247-021-00117-7 Cite
Eon, R. S., & Bachmann, C. M. (2021). Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system. Scientific Reports, 11(1), 3270. https://doi.org/10.1038/s41598-021-82783-3 Cite
Langston, A. K., Alexander, C. R., Alber, M., & Kirwan, M. L. (2021). Beyond 2100: Elevation capital disguises salt marsh vulnerability to sea-level rise in Georgia, USA. Estuarine, Coastal and Shelf Science, 249, 107093. https://doi.org/10.1016/j.ecss.2020.107093 Cite
Record, S., Voelker, N. M., Zarnetske, P. L., Wisnoski, N. I., Tonkin, J. D., Swan, C., Marazzi, L., Lany, N., Lamy, T., Compagnoni, A., Castorani, M. C. N., Andrade, R., & Sokol, E. R. (2021). Novel Insights to Be Gained From Applying Metacommunity Theory to Long-Term, Spatially Replicated Biodiversity Data. Frontiers in Ecology and Evolution, 8(479). https://doi.org/10.3389/fevo.2020.612794 Cite
Aoki, L. R., McGlathery, K. J., Wiberg, P. L., Oreska, M. P. J., Berger, A. C., Berg, P., & Orth, R. J. (2021). Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks. Frontiers in Marine Science, 7(1170). https://doi.org/10.3389/fmars.2020.576784 Cite
Zinnert, J. C., Nippert, J. B., Rudgers, J. A., Pennings, S. C., González, G., Alber, M., Baer, S. G., Blair, J. M., Burd, A., Collins, S. L., Craft, C., Di Iorio, D., Dodds, W. K., Groffman, P. M., Herbert, E., Hladik, C., Li, F., Litvak, M. E., Newsome, S., … Young, D. R. (2021). State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 12(5), e03433. https://doi.org/10.1002/ecs2.3433 Cite
Wood, L. (2021). The Mechanisms and Consequences of Shrub Encroachment on the Virginia Barrier Islands (VCR20210908_004) [Ph.D Dissertation, Virginia Commonwealth University]. https://scholarscompass.vcu.edu/etd/6745/ Cite
Woods, N. N., Tuley, P. A., & Zinnert, J. C. (2021). Long-Term Community Dynamics Reveal Different Trajectories for Two Mid-Atlantic Maritime Forests. Forests, 12(8), 1063. https://doi.org/10.3390/f12081063 Cite
Williams, B. L., & Johnson, D. S. (2021). Role of ecological interactions in saltmarsh geomorphic processes. Marine Ecology Progress Series, 658, 149–161. https://doi.org/10.3354/meps13554 Cite
Wang, C., Schepers, L., Kirwan, M. L., Belluco, E., D’Alpaos, A., Wang, Q., Yin, S., & Temmerman, S. (2021). Different coastal marsh sites reflect similar topographic conditions under which bare patches and vegetation recovery occur. Earth Surf. Dynam., 9(1), 71–88. https://doi.org/10.5194/esurf-9-71-2021 Cite
Walker, J. B., Bijak, A. L., & Blum, L. (2021). Genetic Diversity and Clonal Structure of Spartina alterniflora in a Virginia Marsh. Northeastern Naturalist, 28(3), 357–370. https://doi.org/10.1656/045.028.0309 Cite
Smith, A. J., & Kirwan, M. L. (2021). Sea Level-Driven Marsh Migration Results in Rapid Net Loss of Carbon. Geophysical Research Letters, 48(13), e2021GL092420. https://doi.org/10.1029/2021GL092420 Cite
Rietl, A. J., Megonigal, J. P., Herbert, E. R., & Kirwan, M. L. (2021). Vegetation Type and Decomposition Priming Mediate Brackish Marsh Carbon Accumulation Under Interacting Facets of Global Change. Geophysical Research Letters, 48(8), e2020GL092051. https://doi.org/10.1029/2020GL092051 Cite
Reeves, I. R. B., Moore, L. J., Murray, A. B., Anarde, K. A., & Goldstein, E. B. (2021). Dune Dynamics Drive Discontinuous Barrier Retreat. Geophysical Research Letters, 48(13), e2021GL092958. https://doi.org/10.1029/2021GL092958 Cite
Qi, M., MacGregor, J., & Gedan, K. (2021). Biogeomorphic patterns emerge with pond expansion in deteriorating marshes affected by relative sea level rise. Limnology and Oceanography, 66(4), 1036–1049. https://doi.org/10.1002/lno.11661 Cite
Porter, J. H. (2021). The Routledge Handbook of Landscape Ecology. In R. A. Francis, J. D. A. Millington, G. L. W. Perry, & E. S. Minor (Eds.), Sensors in the Landscape (10.4324/9780429399480_Ch13; 1st ed., pp. 250–263). Routledge. https://doi.org/10.4324/9780429399480 Cite
Oreska, M. P. J., McGlathery, K. J., Wiberg, P. L., Orth, R. J., & Wilcox, D. J. (2021). Defining the Zostera marina (Eelgrass) Niche from Long-Term Success of Restored and Naturally Colonized Meadows: Implications for Seagrass Restoration. Estuaries and  Coasts. https://doi.org/10.1007/s12237-020-00881-3 Cite
Norwood, M. J., Ward, N. D., McDowell, N. G., Myers-Pigg, A. N., Bond-Lamberty, B., Indivero, J., Pennington, S., Wang, W., Kirwan, M., Hopple, A. M., & Megonigal, J. P. (2021). Coastal Forest Seawater Exposure Increases Stem Methane Concentration. Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG005915. https://doi.org/10.1029/2020JG005915 Cite
Norwood, M. J., Ward, N. D., McDowell, N. G., Myers-Pigg, A. N., Bond-Lamberty, B., Indivero, J., Pennington, S., Wang, W., Kirwan, M., Hopple, A. M., & Megonigal, J. P. (2021). Coastal Forest Seawater Exposure Increases Stem Methane Concentration. Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG005915. https://doi.org/10.1029/2020JG005915 Cite
Moncrief, N. D., Porter, J. H., & Dueser, R. D. (2021). Annotated Checklist of Terrestrial Mammals of the Virginia Barrier Islands and the Adjacent Delmarva Peninsula Mainland. Northeastern Naturalist, 28(4), 462–483. https://doi.org/10.1656/045.028.0405 Cite
Iwaniec, D. M., Gooseff, M., Suding, K. N., Samuel Johnson, D., Reed, D. C., Peters, D. P. C., Adams, B., Barrett, J. E., Bestelmeyer, B. T., Castorani, M. C. N., Cook, E. M., Davidson, M. J., Groffman, P. M., Hanan, N. P., Huenneke, L. F., Johnson, P. T. J., McKnight, D. M., Miller, R. J., Okin, G. S., … Vivoni, E. R. (2021). Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 12(5), e03432. https://doi.org/10.1002/ecs2.3432 Cite
Fagherazzi, S., Leonardi, N., Carniello, L., Canestrelli, A., D’Alpaos, A., & Nardin, W. (2021). Modelling Tidal Environments. In Reference Module in Earth Systems and Environmental Sciences (10.1016/B978-0-12-818234-5.00097-3). Elsevier. https://doi.org/10.1016/B978-0-12-818234-5.00097-3 Cite
Fagherazzi, S., Kearney, W., Mariotti, G., Leonardi, N., & Nardin, W. (2021). Understanding Marsh Dynamics: Modelling approaches. In F. D.M. & H. Z. (Eds.), Salt Marshes: Function, Dynamics, and Stresses (VCR20210915_1; pp. 278–300). Cambridge University Press. Cite
Brown, J. (2021). Plant communities in dynamic systems: how disturbance influences coastal plant community structure and function (VCR20210908_003) [Ph.D, Virginia Commonwealth University]. https://scholarscompass.vcu.edu/etd/6637/ Cite
Berger, A. C. (2021). Long-term aquatic eddy covariance measurements of seagrass metabolism and ecosystem response to warming oceans (10.18130/wfh0-1f94) [Ph.D, University of Virginia]. https://doi.org/10.18130/wfh0-1f94 Cite
Liu, Z., Fagherazzi, S., She, X., Ma, X., Xie, C., & Cui, B. (2020). Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Science of The Total Environment, 749, 141493. https://doi.org/10.1016/j.scitotenv.2020.141493 Cite
Flester, J. A., & Blum, L. K. (2020). Rates of Mainland Marsh Migration into Uplands and Seaward Edge Erosion are Explained by Geomorphic Type of Salt Marsh in Virginia Coastal Lagoons. Wetlands. https://doi.org/10.1007/s13157-020-01390-6 Cite
Fantasia-Buscher, C., & Macko, S. (2020). The Effect of Increasing Acidity and Temperature on an Early Life Stage Crustacean, Callinectes Sapidus (10.18130/v3-qnpq-eh96) [University of Virginia, Environmental Sciences - Graduate School of Arts and Sciences, PHD (Doctor of Philosophy), 2020]. https://doi.org/10.18130/v3-qnpq-eh96 Cite
Volaric, M. P., Berg, P., & Reidenbach, M. A. (2020). Drivers of Oyster Reef Ecosystem Metabolism Measured Across Multiple Timescales. Estuaries and Coasts, 43(8), 2034–2045. https://doi.org/10.1007/s12237-020-00745-w Cite
Liu, Z., Fagherazzi, S., Ma, X., Xie, C., Li, J., & Cui, B. (2020). Consumer control and abiotic stresses constrain coastal saltmarsh restoration. Journal of Environmental Management, 274, 111110. https://doi.org/10.1016/j.jenvman.2020.111110 Cite
Cumbie, A. N., Espada, C. D., Nadolny, R. M., Rose, R. K., Dueser, R. D., Hynes, W. L., & Gaff, H. D. (2020). Survey of Rickettsia parkeri and Amblyomma maculatum associated with small mammals in southeastern Virginia. Ticks and Tick-Borne Diseases, 11(6), 101550. https://doi.org/10.1016/j.ttbdis.2020.101550 Cite
Chen, Z., Swallow, S. K., & Yue, I. T. (2020). Correction to: Non-participation and Heterogeneity in Stated Preferences: A Double Hurdle Latent Class Approach for Climate Change Adaptation Plans and Ecosystem Services. Environmental and Resource Economics, 77(3), 671–671. https://doi.org/10.1007/s10640-020-00512-2 Cite
Wittyngham, S. S. (2020). Salinity and Simulated Herbivory Influence Spartina alterniflora Traits and Defense Strategy. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00841-x Cite
Woods, N. N., Swall, J. L., & Zinnert, J. C. (2020). Soil Salinity Impacts Future Community Composition of Coastal Forests. Wetlands, 40(5), 1495–1503. https://doi.org/10.1007/s13157-020-01304-6 Cite
Chen, Z., Swallow, S. K., & Yue, I. T. (2020). Non-participation and Heterogeneity in Stated Preferences: A Double Hurdle Latent Class Approach for Climate Change Adaptation Plans and Ecosystem Services. Environmental and Resource Economics, 77(1), 35–67. https://doi.org/10.1007/s10640-020-00434-z Cite
Failon, C. M., Wittyngham, S. S., & Johnson, D. S. (2020). Ecological Associations of Littoraria irrorata with Spartina cynosuroides and Spartina alterniflora. Wetlands. https://doi.org/10.1007/s13157-020-01306-4 Cite
Yeates, A. G., Grace, J. B., Olker, J. H., Guntenspergen, G. R., Cahoon, D. R., Adamowicz, S., Anisfeld, S. C., Barrett, N., Benzecry, A., Blum, L., Christian, R. R., Grzyb, J., Hartig, E. K., Leo, K. H., Lerberg, S., Lynch, J. C., Maher, N., Megonigal, J. P., Reay, W., … Warren, S. (2020). Hurricane Sandy Effects on Coastal Marsh Elevation Change. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00758-5 Cite