Chen, Y., & Kirwan, M. L. (2022). A phenology- and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sensing of Environment, 281, 113229. https://doi.org/10.1016/j.rse.2022.113229 Cite
Chen, Y., & Kirwan, M. L. (2022). A phenology- and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sensing of Environment, 281, 113229. https://doi.org/10.1016/j.rse.2022.113229 Cite
Chen, Y., & Kirwan, M. L. (2022). Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nature Geoscience. https://doi.org/10.1038/s41561-022-01041-x Cite
Chen, Y., & Kirwan, M. L. (2022). Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nature Geoscience. https://doi.org/10.1038/s41561-022-01041-x Cite
Cheng, S. L., Tedford, K. N., Smith, R. S., Hardison, S., Cornish, M. R., & Castorani, M. C. N. (2022). Coastal Vegetation and Bathymetry Influence Blue Crab Abundance Across Spatial Scales. Estuaries and Coasts, 45(6), 1701–1715. https://doi.org/10.1007/s12237-021-01039-5 Cite
Cheng, S. L., Tedford, K. N., Smith, R. S., Hardison, S., Cornish, M. R., & Castorani, M. C. N. (2022). Coastal Vegetation and Bathymetry Influence Blue Crab Abundance Across Spatial Scales. Estuaries and Coasts, 45(6), 1701–1715. https://doi.org/10.1007/s12237-021-01039-5 Cite
Nordio, G., & Fagherazzi, S. (2022). Salinity increases with water table elevation at the boundary between salt marsh and forest. Journal of Hydrology, 608, 127576. https://doi.org/10.1016/j.jhydrol.2022.127576 Cite
Nordio, G., & Fagherazzi, S. (2022). Salinity increases with water table elevation at the boundary between salt marsh and forest. Journal of Hydrology, 608, 127576. https://doi.org/10.1016/j.jhydrol.2022.127576 Cite
Wang, J., Dai, Z., Fagherazzi, S., Zhang, X., & Liu, X. (2022). Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta. Science of The Total Environment, 809, 152076. https://doi.org/10.1016/j.scitotenv.2021.152076 Cite
Wang, J., Dai, Z., Fagherazzi, S., Zhang, X., & Liu, X. (2022). Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta. Science of The Total Environment, 809, 152076. https://doi.org/10.1016/j.scitotenv.2021.152076 Cite
Smith, R. S., Hogan, S., Tedford, K. N., Lusk, B., Reidenbach, M. A., & Castorani, M. C. N. (2022). Long-term data reveal greater intertidal oyster biomass in predicted suitable habitat. Marine Ecology Progress Series, 683, 221–226. https://doi.org/10.3354/meps13949 Cite
Smith, R. S., Hogan, S., Tedford, K. N., Lusk, B., Reidenbach, M. A., & Castorani, M. C. N. (2022). Long-term data reveal greater intertidal oyster biomass in predicted suitable habitat. Marine Ecology Progress Series, 683, 221–226. https://doi.org/10.3354/meps13949 Cite
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E., & Attard, K. M. (2022). Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann Rev Mar Sci, 14, 431–455. https://doi.org/10.1146/annurev-marine-042121-012329 Cite
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E., & Attard, K. M. (2022). Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann Rev Mar Sci, 14, 431–455. https://doi.org/10.1146/annurev-marine-042121-012329 Cite
Zhu, Q. (2022). Sediment Connectivity in the Coupled Tidal Flat-Seagrass-Marsh System [Ph.D, University of Virginia]. https://doi.org/10.18130/jssv-7037 Cite
Zhang, X., Wright, K., Passalacqua, P., Simard, M., & Fagherazzi, S. (2022). Improving Channel Hydrological Connectivity in Coastal Hydrodynamic Models With Remotely Sensed Channel Networks. Journal of Geophysical Research: Earth Surface, 127(3), e2021JF006294. https://doi.org/10.1029/2021JF006294 Cite
Xu, Y., Kalra, T. S., Ganju, N. K., & Fagherazzi, S. (2022). Modeling the Dynamics of Salt Marsh Development in Coastal Land Reclamation. Geophysical Research Letters, 49(6), e2021GL095559. https://doi.org/10.1029/2021GL095559 Cite
Wittyngham, S. S. (2022). Spartina Alterniflora Defense Against Herbivory (2691825988) [Ph.D., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fspartina-alterniflora-defense-against-herbivory%2Fdocview%2F2691825988%2Fse-2%3Faccountid%3D14678 Cite
Wang, J., Dai, Z., Fagherazzi, S., & Long, C. (2022). A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner: Results from a case study. Sedimentology, 69(4), 1626–1648. https://doi.org/10.1111/sed.12970 Cite
Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R., & Kirwan, M. L. (2022). Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Global Change Biology, 28(10), 3236–3245. https://doi.org/10.1111/gcb.16149 Cite
Shoemaker, L. G., Hallett, L. M., Zhao, L., Reuman, D. C., Wang, S., Cottingham, K. L., Hobbs, R. J., Castorani, M. C. N., Downing, A. L., Dudney, J. C., Fey, S. B., Gherardi, L. A., Lany, N., Portales-Reyes, C., Rypel, A. L., Sheppard, L. W., Walter, J. A., & Suding, K. N. (2022). The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 103(4), e3650. https://doi.org/10.1002/ecy.3650 Cite
Nordio, G., & Fagherazzi, S. (2022). Storm Surge and Tidal Dissipation in Deltaic Wetlands Bordering a Main Channel. Journal of Geophysical Research: Oceans, 127(3), e2021JC017655. https://doi.org/10.1029/2021JC017655 Cite
Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2022). Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 7(4), 321–331. https://doi.org/10.1002/lol2.10262 Cite
Liu, Z., Gourgue, O., & Fagherazzi, S. (2022). Biotic and abiotic factors control the geomorphic characteristics of channel networks in salt marshes. Limnology and Oceanography, 67(1), 89–101. https://doi.org/10.1002/lno.11977 Cite
Juska, I. (2022). Examining Metabolism in Seagrass Meadows: Trends in Respiration and Non-Dissolved Gas Ebullition (10.18130/7g8x-x368) [M.S. Thesis, University of Virginia]. https://doi.org/10.18130/7g8x-x368 Cite
Johnson, D. S. (2022). Beautiful swimmers attack at low tide. Ecology, 103(10), e3787. https://doi.org/10.1002/ecy.3787 Cite
Johnson, D. S. (2022). Are amphipods Orchestia grillus (Bosc, 1802) (Amphipoda: Talitridae) infected with the trematode Levinseniella byrdi (Heard, 1968) drawn to the light? Journal of Crustacean Biology, 42(2). https://doi.org/10.1093/jcbiol/ruac017 Cite
Hogan, S., Murphy, E. A. K., Volaric, M. P., Castorani, M. C. N., Berg, P., & Reidenbach, M. A. (2022). Influence of oyster reefs on infauna and sediment spatial distributions within intertidal mudflats. Marine Ecology Progress Series, 686, 91–106. https://doi.org/10.3354/meps13983 Cite
Heller, E. L., Karpanty, S. M., Cohen, J. B., Catlin, D. H., Ritter, S. J., Truitt, B. R., & Fraser, J. D. (2022). Factors that affect migratory Western Atlantic red knots (Calidris canutus rufa) and their prey during spring staging on Virginia’s barrier islands. PLOS ONE, 17(7), e0270224. https://doi.org/10.1371/journal.pone.0270224 Cite
Gourgue, O., van Belzen, J., Schwarz, C., Vandenbruwaene, W., Vanlede, J., Belliard, J. P., Fagherazzi, S., Bouma, T. J., van de Koppel, J., & Temmerman, S. (2022). Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply. Earth Surf. Dynam., 10(3), 531–553. https://doi.org/10.5194/esurf-10-531-2022 Cite
Goetz, E. M. (2022). Invertebrates in a Migrating Salt Marsh (2710986615) [M.S., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Finvertebrates-migrating-salt-marsh%2Fdocview%2F2710986615%2Fse-2%3Faccountid%3D14678 Cite
Fenster, M., & Dominguez, R. (2022). Quantifying Coastal Storm Impacts Using a New Cumulative Storm Impact Index (CSII) Model: Application along the Virginia Coast, USA. Journal of Geophysical Research: Earth Surface, e2022JF006641. https://doi.org/10.1029/2022JF006641 Cite
Coleman, D. J., Schuerch, M., Temmerman, S., Guntenspergen, G., Smith, C. G., & Kirwan, M. L. (2022). Reconciling models and measurements of marsh vulnerability to sea level rise. Limnology and Oceanography Letters, 7(2), 140–149. https://doi.org/10.1002/lol2.10230 Cite
Zhu, Q. (2022). Sediment Connectivity in the Coupled Tidal Flat-Seagrass-Marsh System [Ph.D, University of Virginia]. https://doi.org/10.18130/jssv-7037 Cite
Zhang, X., Wright, K., Passalacqua, P., Simard, M., & Fagherazzi, S. (2022). Improving Channel Hydrological Connectivity in Coastal Hydrodynamic Models With Remotely Sensed Channel Networks. Journal of Geophysical Research: Earth Surface, 127(3), e2021JF006294. https://doi.org/10.1029/2021JF006294 Cite
Xu, Y., Kalra, T. S., Ganju, N. K., & Fagherazzi, S. (2022). Modeling the Dynamics of Salt Marsh Development in Coastal Land Reclamation. Geophysical Research Letters, 49(6), e2021GL095559. https://doi.org/10.1029/2021GL095559 Cite
Wittyngham, S. S. (2022). Spartina Alterniflora Defense Against Herbivory (2691825988) [Ph.D., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fspartina-alterniflora-defense-against-herbivory%2Fdocview%2F2691825988%2Fse-2%3Faccountid%3D14678 Cite
Wang, J., Dai, Z., Fagherazzi, S., & Long, C. (2022). A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner: Results from a case study. Sedimentology, 69(4), 1626–1648. https://doi.org/10.1111/sed.12970 Cite
Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R., & Kirwan, M. L. (2022). Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Global Change Biology, 28(10), 3236–3245. https://doi.org/10.1111/gcb.16149 Cite
Shoemaker, L. G., Hallett, L. M., Zhao, L., Reuman, D. C., Wang, S., Cottingham, K. L., Hobbs, R. J., Castorani, M. C. N., Downing, A. L., Dudney, J. C., Fey, S. B., Gherardi, L. A., Lany, N., Portales-Reyes, C., Rypel, A. L., Sheppard, L. W., Walter, J. A., & Suding, K. N. (2022). The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 103(4), e3650. https://doi.org/10.1002/ecy.3650 Cite
Nordio, G., & Fagherazzi, S. (2022). Storm Surge and Tidal Dissipation in Deltaic Wetlands Bordering a Main Channel. Journal of Geophysical Research: Oceans, 127(3), e2021JC017655. https://doi.org/10.1029/2021JC017655 Cite
Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2022). Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 7(4), 321–331. https://doi.org/10.1002/lol2.10262 Cite
Liu, Z., Gourgue, O., & Fagherazzi, S. (2022). Biotic and abiotic factors control the geomorphic characteristics of channel networks in salt marshes. Limnology and Oceanography, 67(1), 89–101. https://doi.org/10.1002/lno.11977 Cite
Juska, I. (2022). Examining Metabolism in Seagrass Meadows: Trends in Respiration and Non-Dissolved Gas Ebullition (10.18130/7g8x-x368) [M.S. Thesis, University of Virginia]. https://doi.org/10.18130/7g8x-x368 Cite
Johnson, D. S. (2022). Beautiful swimmers attack at low tide. Ecology, 103(10), e3787. https://doi.org/10.1002/ecy.3787 Cite
Johnson, D. S. (2022). Are amphipods Orchestia grillus (Bosc, 1802) (Amphipoda: Talitridae) infected with the trematode Levinseniella byrdi (Heard, 1968) drawn to the light? Journal of Crustacean Biology, 42(2). https://doi.org/10.1093/jcbiol/ruac017 Cite
Hogan, S., Murphy, E. A. K., Volaric, M. P., Castorani, M. C. N., Berg, P., & Reidenbach, M. A. (2022). Influence of oyster reefs on infauna and sediment spatial distributions within intertidal mudflats. Marine Ecology Progress Series, 686, 91–106. https://doi.org/10.3354/meps13983 Cite
Heller, E. L., Karpanty, S. M., Cohen, J. B., Catlin, D. H., Ritter, S. J., Truitt, B. R., & Fraser, J. D. (2022). Factors that affect migratory Western Atlantic red knots (Calidris canutus rufa) and their prey during spring staging on Virginia’s barrier islands. PLOS ONE, 17(7), e0270224. https://doi.org/10.1371/journal.pone.0270224 Cite
Gourgue, O., van Belzen, J., Schwarz, C., Vandenbruwaene, W., Vanlede, J., Belliard, J. P., Fagherazzi, S., Bouma, T. J., van de Koppel, J., & Temmerman, S. (2022). Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply. Earth Surf. Dynam., 10(3), 531–553. https://doi.org/10.5194/esurf-10-531-2022 Cite
Goetz, E. M. (2022). Invertebrates in a Migrating Salt Marsh (2710986615) [M.S., The College of William and Mary]. ProQuest Dissertations & Theses Global. http://proxy01.its.virginia.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Finvertebrates-migrating-salt-marsh%2Fdocview%2F2710986615%2Fse-2%3Faccountid%3D14678 Cite