


1

Chapter 1.

Introduction



2

1.1.  Introduction 

Because individuals can react only to their local environment, ecological

interactions are intrinsically spatial.  It is the local environmental that affects nutrient or

food uptake, competition, or predation risk, and therefore indirectly controls growth,

movement, reproduction, and survival.  For microorganisms, the “local” environment is

quite small, as an individual bacterium is usually less than 2 µm long.  While some

aspects of the environment (e.g., temperature and pressure) may be the same at the

macro- and microscales, bulk measurements of other environmental variables (e.g.,

nutrient concentration and moisture content) may not accurately reflect the local

conditions affecting an individual microorganism or a microbial assemblage.

Nevertheless, most studies in microbial ecology are performed at larger spatial scales,

using sample sizes that are determined by the researcher’s perception of environmental

variability or by the particular analytical technique to be employed, and rarely consider

the small spatial scale at which individuals may actually be interacting with one another

and the environment.  

Brock (1987) proposed that in order to conduct appropriate microbial ecology,

studies must focus on scales important to individual bacterial cells.  He maintained that

this is the “only way we can really see organisms in their actual environments,” and

“without knowing where these organisms lived, (how) can we make any sense” out of our

ecological analyses.  However, given that a single milliliter (1 cm3) of unpolluted surface

water typically contains ~ 106 bacteria, and soils can contain up to 1010 microorganisms

in a single gram, it is a daunting task to study microbial ecology at the level of the
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individual.  Moreover, the small size of microorganisms and the hyperdiversity of

microbial communities mean that Brock’s challenge is currently insurmountable.  

Not only are ecological approaches that rely on the identification and

classification of individual members of a microbial community impractical, once

completed, such a study would only be able to describe a very small geographic area

within an ecosystem.  However, the primary interest of most environmental scientists is

in how microbial activity manifests at larger spatial scales and helps to control nutrient

cycling, decomposition, primary productivity, and other microbially mediated ecosystem

functions at scales that are relevant to humans.  The total capacity of microbial

communities at these larger scales can be thought of as the sum of the activity of several

“unit communities” of microorganisms (Swift, 1984), in separate microhabitats, whose

individual activities are pooled into what scientists observe at the field or landscape scale.

In order to understand well how these units fit together and how their combined activity

contributes to overall ecosystem function, we need to better understand the small-scale

spatial distribution of microorganisms and microbial communities.  In particular, we need

to better understand the size and distribution of these unit communities (patches), the

biological implications of the interactions among neighboring patches, and how

variations in the macro-environment may alter these relationships and influence the

activity of  these patches.  

Despite the importance of spatial variability in environmental microbiology,

studies that specifically consider spatial scale when examining the distribution patterns of

microorganisms are rare.  Most often, when microbial ecologists publish papers

describing the “spatial variation” or “spatial distribution” of bacteria in the environment,
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they are either reporting the results of studies monitoring the distribution of individuals at

the microscale (Dandurand et al., 1995; Dandurand et al., 1997; Dechesne et al., 2003;

Grundmann and Debouzie, 2000; Jordan and Maier, 1999; Nunan et al., 2001), or they

are discussing patterns observed at the landscape or regional scale (Blum et al., 2004;

Cho and Tiedje, 2000; Finlay et al., 1996; Finlay et al., 1999; Finlay et al., 2001;

Fulthorpe et al., 1998; Garcia-Pichel et al., 1996; Teske et al., 2000).  There is much less

research effort directed toward understanding spatial scale and variation in microbial

communities at distances intermediate to those discussed above (i.e., from centimeters to

hundreds of meters).  In my dissertation research, I focused on these intermediate

distances, and studied the distribution of microbial communities in several different

environmental systems.  Key questions addressed by this work include: (i) how are

bacterial distributions structured and how do these patterns correlate with the distribution

of environmental properties, and (ii) what are the relevant scales for sampling and

understanding this spatial heterogeneity.  Knowledge of the spatial patchiness of bacteria

at these scales is important for addressing basic ecological questions, and has many

consequences for experimental design, environmental sampling, and statistical analyses.

Moreover, these distances are closest to what humans naturally perceive as they inspect

an environment, so it is important to determine how observations made at these scales

relate to microbial activity at other spatial scales.  For example, scientists must

understand the spatial relationship of microbial properties and resources at these (smaller)

scales before they can be confident that their sampling designs are adequate to resolve

differences at larger scales and in relation to ecosystem function and stability.  



5

1.2.  Background

1.2.1.  Methodological limitations associated with community analysis

When macro-organismal ecologists set out to investigate community organization

and spatial variability, the studies usually involve identifying the individuals in an area

and recording their locations, relative to one another.  However, there are a number of

attributes of microbial communities that limit the use of such an approach, and many

methodological constraints have thus far hampered our ability to study microbial

diversity.  In particular, the small size of microorganisms means that they are difficult to

visualize.  Even with the aid of a microscope, the lack of morphological distinctiveness

among types makes the visual classification of individuals into different taxonomic

groups impossible.  Moreover, as discussed above, the tremendous abundance of

organisms in microbial communities means that the task of sorting them is

overwhelming.  Another difficulty is in developing and implementing sampling methods

that preserve the spatial distribution of microorganisms within the native environmental

matrix during sample collection and processing.  In addition, the hyperdiversity of

microbial communities means that the use of such an individual-based approach is

impractical in many cases; for example, microbial communities in soil have been shown

to contain up to 10,000 types (species) in a single 30 g sample (Torsvik et al., 1996;

Torsvik et al., 1998), and it has been proposed that the oceans may contain 2 × 106 types

(Curtis et al., 2002).  

Culture-based studies provide the framework from which microbial ecologists

derive much of their current understanding of microbial interactions and community

dynamics.  However, it is well documented that cultural techniques are both selective and
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unrepresentative of the total microbial community.  Some studies propose that less than

1% of microorganisms in the environment can be cultured in the lab (Holben, 1997),

though there is little solid evidence supporting the accuracy of this estimate.  Since the

application of molecular biological methods to microbial ecology in the mid-1980s, many

new, previously uncultivated, microorganisms have been identified.  Whole groups of

organisms, known only from molecular sequences, are now believed to be quantitatively

significant in many environments.  In particular, the use of 16S rRNA gene sequences has

brought about a new era of microbial systematics, and it has become quite popular to

survey microbial community diversity using polymerase chain reaction (PCR) and 16S

rRNA/DNA-based methods.  The 16S rRNA genes contain highly conserved sequence

domains interspersed with more variable regions, and comparative analysis of rRNA

sequences can identify so-called “signature sequence motifs” that are targets for

evolutionary-based identification (Theron and Cloete, 2000).  The use of PCR

amplification of 16S rRNA genes and subsequent cloning has allowed us to ‘identify’ a

number of new ‘species’; however, a tremendous portion of the microbial diversity has

still not been explored.  Current estimates indicate that between only 1 and 5% of the

microorganisms on earth have even been identified and named (Kennedy and Gewin,

1997).  

1.2.2.  “Whole-community” approaches to microbial community analysis

In order to comprehend the full extent of the relationships within a microbial

community, and between a community and its surroundings, researchers must be able to

evaluate attributes for the assemblage without relying on microbial growth and culture-
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based techniques for detection or identification of individuals.  This need has lead to the

development of several approaches that use “whole-community samples” for analysis of

microbial communities.  The basic premise behind this approach is that all of the

organisms in a sample are analyzed as a unit, and relative comparisons are made between

communities based on overall characteristics manifested by the different mixtures of

organisms.  In order to monitor structural differences in microbial communities, most of

the research has focused on the analysis of whole-community DNA samples and several

new molecular genetic approaches have recently emerged (to be discussed).  Similarly,

the lipid content of microbial cells (e.g., phospholipid ester-linked fatty acids or PLFA

(Tulnid and White, 1990) and fatty acid methyl esters or FAME (Kennedy, 1995)) may

be used to monitor community composition (Laczko et al., 1997; Zogg et al., 1997).

However, many subsets of the microbial community respond to stressful conditions in

their microenvironment by shifting lipid composition (Kieft et al., 1997; White et al.,

1997), confounding the interpretation of the phospholipid patterns and signatures.

Another commonly used whole-community approach is community-level physiological

profiling (CLPP), where patterns in carbon substrate utilization are compared for

different communities (Garland and Mills, 1991).  

1.2.3.  Molecular genetic techniques for comparing community structure

Since most of my dissertation research has used molecular genetic techniques to

analyze microbial community structure, a brief overview of these approaches is

warranted.  For more detail on the use and development of these methods, see: Dahllof

(2002), Johnsen et al. (2001), Kozdroj and van Elsas (2001), Theron and Cloete (2000),
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and Torsvik and Ovreas (2002).  As discussed above, most of the recent research using

the whole-community approach in microbial ecology has focused on the analysis of the

combined genetic material (either DNA or RNA) from a community sample.  However,

many of these techniques (e.g., DNA hybridization (Griffiths et al., 1996; Lee and

Fuhrman, 1990; Lee and Fuhrman, 1991), percent G + C content (Holben and Harris,

1995), or DNA reassociation kinetics (C0t curves) (Torsvik et al., 1990; Torsvik et al.,

1994)) require a fairly large environmental sample in order to obtain enough genetic

material for analysis.  The need for large quantities of DNA often means that sample

collection can be very time-consuming (e.g., filtering large volumes of water), and that

samples may need to be gathered over a relatively large area (e.g., several grams of soil),

making it impossible to examine small-scale spatial differences in community structure.

Moreover, the analyses themselves are very time-consuming, which further limits the

feasibility of large and comprehensive studies of microbial community dynamics.

Technological development over the last several years has helped reduce this problem,

and the introduction of PCR-based methods now permits more rapid analysis using

smaller sample sizes.

Recently, the use of PCR-based “DNA fingerprinting” for the analysis of

microbial communities has become very popular. Commonly used PCR-based DNA

fingerprinting techniques include: denaturing gradient gel electrophoresis or DGGE

(Muyzer, 1999; Muyzer et al., 1993), amplified ribosomal DNA restriction analysis or

ARDRA (Massol-Deya et al., 1995), terminal restriction fragment length polymorphism

or T-RFLP (Liu et al., 1997; Marsh, 1999), randomly amplified polymorphic DNA or 
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RAPD (Franklin et al., 1999; Wikström et al., 1999; Wikström et al., 2000;

Williams et al., 1993), and amplified fragment length polymorphism or AFLP (Franklin

et al., 2001; Franklin and Mills, 2003; Zabeau and Vos, 1993).  These methods can be

broadly categorized into two groups: (i) approaches where specific primers, designed to

amplify certain known genes or sections of a genome, are used to direct the PCR (e.g.,

DGGE, ARDRA, and T-RFLP), or (ii) approaches where the PCR amplification is based

on the distribution of random sequences throughout the DNA sample (e.g., RAPD and

AFLP).  When specific primers are used to study microbial communities, the 16S rRNA

gene is most often considered.  

There are several additional molecular biological techniques that have recently

emerged for the study of microbial communities, and should be briefly mentioned.

Specifically, the novel application of nucleic acid array technology to microbial

community analysis may provide an efficient means to assess the presence of organisms

or the expression of genes in communities.   However, the performance of microarray

hybridization in environmental studies has yet to be carefully evaluated, and a number of

technological challenges need to be solved before this technique can reliable inventory

complex samples (Zhou, 2003; Zhou and Thompson, 2002).  Another important

technique that is being refined is fluorescence in situ hybridization (FISH) with rRNA-

targeted probes in combination with microscopy or flow cytometry (Handelsman and

Smalla, 2003).  FISH has the unique potential to study the composition of bacterial

communities in situ and may also be used to provide new ways to link structure and

function in microbial ecology studies (Wagner et al., 2003).  While these techniques 
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present a tremendous opportunity to examine microbial community dynamics in a wide

variety of systems, they are nevertheless confined to ‘accessible’ and previously

encountered bacteria.  In order to apply either FISH or DNA microarrays, some portion

of the genetic sequence of the individuals of interest must be available.  

1.2.4.  Spatial heterogeneity in microbial systems

In natural systems, environmental heterogeneity arises as a result of the

interaction of a hierarchical series of interrelated variables that fluctuate at many different

spatial and temporal scales.  These physical, chemical, and biological variables may

combine to influence the abundance, diversity, and activity of microorganisms at many

different spatial scales.  These properties do not vary independently; rather, the general

perception is that any such variable measured at a certain point in space and time is the

outcome of several processes, all of which are spatially variable.  It is thought that the

relative role of different environmental forces may vary across scales and among

ecological systems, and one of the major challenges for the discipline of ecology is to

measure the relative strengths of these factors in natural ecosystems, examine the

interactions among them, and combine this information in an effort to explain the patterns

of organism distribution, abundance, and function.

Studies of spatial organization in microbial systems may be broadly categorized

into four scales of interest: microscale, plot scale, field or landscape scale, and regional

scale (Parkin, 1993).  Within each of these scales/categories, multiple levels of

organization may exist.  Often, the hierarchical levels are nested so that high-level units

consist of aggregations of lower-level units, though the boundaries between levels are not
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usually visible.  Many of the studies that have considered spatial variability in microbial

ecology focus on a single scale, though it has been suggested that, because of the

hierarchical nature of spatial variability, multi-scale analyses of spatial variability are

needed in order to fully represent the complexity of natural systems (Benedetti-Cecchi,

2001).  

Because spatial variability can manifest at many different scales, the patterns one

observes depend greatly on the scale of observation (Avois et al., 2000; Levin, 1992).  In

sampling theory, spatial scale is defined by several characteristic properties: grain size,

sampling interval, and extent (Legendre and Legendre, 1998).  Grain size is the size of

the elementary sampling units (e.g., the volume of sample), and defines the resolution of

the study (Schneider, 1994).  Sampling interval is the average distance between sampling

units, and the extent is the total area included in the study.  Depending on the ecological

question being addressed, and what is already known about the scale of the process of

interest, the dimensions of these components vary.  For a given sampling design, no

structure can be detected that is smaller than the grain size or larger than the extent of the

study.  In this way, the sampling design defines the observational window for spatial

pattern analysis (Legendre and Legendre, 1998).  

1.2.4.1.  “Local” controls on the spatial distribution of microorganisms

Though the primary focus of my dissertation research has been to study the spatial

distribution of microbial communities at larger spatial scales (cm to plot-scale), it is

important to understand the factors that control the distribution of individuals and

populations at the microscale in order to determine which variables may be useful for 
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study at larger scales.  Microorganisms are generally regarded as inhabiting

“microhabitats”, but this term is poorly defined and the meaning differs for different

types of organisms (e.g., fungi versus bacteria) and in different systems (e.g., soil versus

aquatic).  For example, bacterial development in soils is probably influenced by

conditions within only a few microns, while a fungus has the advantage of being able to

extend beyond its initial immediate surroundings, using its hyphae in much the same way

that a plant root system does (Harris, 1994).  For this reason, a fungus may experience a

degree of averaging of soil conditions, and is not restricted to as small of a microhabitat

as a bacterium (Parkin, 1993).  In aquatic systems, the more diffuse nature of the

environmental matrix may mean that microbes are impacted by environmental variability

existing at a broader spatial scale, compared to a more highly structured soil matrix.  The

size of a microhabitat may be defined by the physical and chemical environment directly

adjacent to the microbial cell or colony (Parkin, 1993), and, in this regard, is not a fixed

unit.  Its size is operationally dependent upon the specific process or microorganism

under study, and the nature of the environmental matrix within which the organism

resides.

The distance between and “reachability” of different microhabitats is an important

issue that may help control the spatial distribution of microorganisms and microbial

community composition.  For an organism to be present in a system, it must either evolve

there or be transported from another site, so the spatial continuity of microhabitats may

help control the distribution patterns of microorganisms at many different scales.

Moreover, spatial continuity and transport of microorganisms may influence the response

of a microbial community to a disturbance.  In particular, the frequency or extent to
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which a disturbed system is inoculated with new organisms from “nearby” or

“connected” communities could have a strong influence on system recovery.  Similarly,

this type of information could be useful for predicting the distribution and persistence of

a non-native or invasive microorganism in an ecosystem.  Practical applications include

determining the distribution of plant pathogens in an agricultural system or judging the

success of an intentionally introduced organism placed in a contaminated environment

for the purposes of bioremediation.  At this point, it is unclear what the relationship is

between spatial heterogeneity and colonization success for these types of organisms.

Colonization success may be greater in a heterogeneous system, because a spatially

heterogeneous environment is more likely to include a microenvironment that is

hospitable to the new organism.  However, in a diverse and spatially heterogeneous

habitat, the number of occurrences of this ideal microenvironment may be small, in

which case spatial heterogeneity may make it more difficult for an invasive/introduced

organism to achieve dominance and thus have a major influence on the ecosystem.  

Bacterial colonization can occur due to active movement of an organism to a new

site, or through passive transport by other agents (e.g., water or animals) (Harris, 1994).

Though little is known about the importance of bacterial motility on colonization, it is

generally assumed that active movement is relatively small compared to other dispersive

processes.  More research is necessary to investigate the relative importance of these two

transport pathways, and the spatial extend over which each may be important.  A central

question that follows from an investigation of transport of microorganisms is to what

extent can an isolated cell survive and successfully colonize a given location.  After a cell

arrives at a colonization site, it could exist in a resting stage for some period of time, it
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could die, or it could grow and reproduce, potentially providing a seed for further

colonization of another location.  Which of these scenarios takes place is likely

determined by resource availability and by interactions with other community members.

The ability to predict colonization efficiency then requires increased research into several

questions of fundamental ecological importance, including habitat suitability, invasibility

of existing communities, and interactions among community members (e.g., competition,

predation, and synergistic or mutualistic relationships).  As scientists learn more about

these phenomena, especially at scales relevant to individual microbes, we will become

better able to predict the persistence of unique organisms in a new habitat.  This type of

knowledge about the microscale variation in microbial communities is necessary for

understanding the mechanisms behind microbial community formation and maintenance,

and for evaluating the stability and resilience of these communities.

In addition to the topics discussed above, spatial heterogeneity may help control

community composition and diversity by altering biological interactions among

organisms and through habitat partitioning.  In particular, it is thought that spatial

heterogeneity plays an important role in determining diversity, as spatial structure in

microenvironments can increase niche complexity.  This increased niche complexity may

create favorable habitat space for many types of organisms, with very different

physiological requirements, within a rather small area.  Similarly, if the habitat is

subdivided into many separate pockets of resources, populations may avoid competition

by physical isolation, and this is thought to contribute to the tremendous microbial

diversity seen in soils (Zhou et al., 2002).  Habitat partitioning can also influence

predation, and thus exert a strong indirect control on community composition.
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The plausibility of spatial structure (e.g., patchiness) at small scales in microbial

systems has been intensively debated in the past (Azam and Ammerman, 1984; Fenchel,

1984; Lehman and Scavia, 1982; Levin and Segal, 1976; Sieburth, 1984); however, a

great deal of evidence is now available to demonstrate that this type of microscale

patchiness is widespread (Blackburn and Fenchel, 1999; Blackburn et al., 1998; Duarte

and Vaqué, 1992; Grundmann and Debouzie, 2000; Krembs et al., 1998a; Long and

Azam, 2001; Nunan et al., 2003).  A prerequisite for such an analysis is the conservation

of the native state of the environmental sample such that the in situ distribution of the

inhabitants and the environmental components are preserved.  One strategy for

investigating microorganisms within their natural spatial distribution is by embedding the

samples in a material such as agarose (Macnaughton et al., 1996), paraffin wax (Licht et

al., 1996; Poulsen et al., 1994; Rothemund et al., 1996), and hard setting resins

(Kawaguchi and Decho, 2002; Manz et al., 2000; Nunan et al., 2001) prior to analysis.  In

aquatic systems, a spatial information preservation (SIP) method has been applied, which

is based on rapidly freezing small samples of water as a means of maintaining the 3D

particle distribution for microscopic analysis (Krembs et al., 1998a; Krembs et al.,

1998b).  

In soils, one-dimensional microscale data has been collected along soil transects

(Grundmann and Debouzie, 2000) and along plant roots (Dandurand et al., 1995), and

non-random spatial patterns of bacteria have been identified.  More recently, efforts have

focused on analyzing the two- (Dandurand et al., 1997; Nunan et al., 2001) and three-

dimensional (Dechesne et al., 2003; Grundmann et al., 2001) distribution of

microorganisms by integrating the analysis of multiple “microsamples.”  The results
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indicate that the microhabitat distributions in soil probably involve an array of colonized

patch sizes, and the location of different nutrient sources is thought to be one of the major

factors determining the distribution of bacteria in soil (Dechesne et al., 2003).  For

example, the distribution of particulate carbon may have a strong influence on the small-

scale variations in bacteria abundance (Parkin et al., 1987; Wachinger et al., 2000).

However, the situation is more complex, and less well understood, for soluble substrates

(Dechesne et al., 2003).  In aquatic systems, most of the previous work on very small-

scale patchiness has been based on “cluster” hypotheses, including the proposal that

bacteria actively congregate around phytoplankton cells (i.e., the phycosphere concept

(Azam and Ammerman, 1984; Bell and Mitchell, 1972)) or particulate organic matter

(Long and Azam, 2001) to enhance their exposure to growth substrates.  For example,

direct manipulation of water samples via the addition of algal detritus has been shown to

stimulate the formation of nano-scale patches of lake bacterioplankton (Krembs et al.,

1998a).  In order to determine the biological and environmental significance of this type

of patchiness, it will be necessary to determine how common the phenomenon is in space

and time and in different environments.  If patchiness at these scales is widespread, as

many researchers now believe, it may mean that rate processes that are concentration

dependant are being miscalculated (Krembs et al., 1998a).  

1.2.4.2.  Variability at larger spatial scales

In general, the grain size used for collecting environmental samples of microbial

communities is too large to permit analysis of the location or activity of individual

organisms, and most of the work looking at microbial community spatial variability
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examines larger scales.  Studies in agricultural soils have demonstrated that significant

spatial heterogeneity may exist for microbiological processes (Bending et al., 2001;

Grundmann and Debouzie, 2000), community structure (Balser and Firestone, 1996;

Cavigelli et al., 1995; Franklin and Mills, 2001), and abundance (Nunan et al., 2001;

Wollum and Cassel, 1984); patch size estimates range widely from as small as 2 mm

(Grundmann and Debouzie, 2000) to nearly 10 meters (Franklin and Mills, 2001).

Similar studies have been conducted in grassland and forest soils (Both et al., 1992;

Kuperman et al., 1998; Morris, 1999; Ritz et al., 2001; Robertson et al., 1988; Saetre and

Bååth, 2000), in a shallow coastal aquifer (Franklin et al., 1999), and in the open ocean

(Duarte and Vaqué, 1992; Mackas, 1984).  For salt marsh and marine sediments,

variation has been examined at small scales (i.e., < 1 m2 (Berardesco et al., 1998;

Danovaro et al., 2001; Franklin et al., 2002; Scala and Kerkhof, 2000)), and at

intermediate (< 150 m (Moran et al., 1987; Scala and Kerkhof, 2000)) and larger

distances (km (Scala and Kerkhof, 2000)).  In general, all of these studies reveal that

microbial communities can be organized at a variety of spatial scales, which likely reflect

the scales of heterogeneity in the distribution of physical and chemical properties for the

environment under investigation.  Most of this work has considered more general

community properties (e.g., total abundance, biomass, or activity (Duarte and Vaqué,

1992; Moran et al., 1987; Morris, 1999)), while relatively few studies have examined the

distribution of microbial community structure (Balser and Firestone, 1996; Both et al.,

1992; Mackas, 1984; Saetre and Bååth, 2000).  
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1.2.4.3.  Hierarchical scales of organization

Given that environmental factors do not necessarily operate independently, or at

distinct spatial scales, studying microbial systems using a single analytical scale cannot

provide a complete understanding of community dynamics.  Multi-scale comparisons, in

which patterns are analyzed at several different spatial scales, may be more useful when

trying to identify the factors that control community development.  Conclusions about the

organization of microbial communities, the effect of disturbance, or the roles of various

limiting factors are likely to differ at different spatial scales (Wiens et al., 1986).

Moreover, the characterization of microbial communities at several different scales may

help explain paradoxes that arise when different investigators, studying similar

communities but at different scales, arrive at different conclusions about the factors that

structure those communities.  These disagreements may reflect viewpoints of different

scales, and not differences in the way communities are organized (Rahel, 1990).  

Recently, scientists have begun to focus on multi-scale comparisons, and have

found evidence for nested scales of spatial structure in microbial communities (Ettema

and Wardle, 2002; Robertson and Gross, 1994; Saetre and Bååth, 2000; Stenger et al.,

2002).  For example, Nunan et al. (2002) studied the spatial distribution of soil bacteria at

three different scales, ranging from µm to meters, and found that the distribution of

individual bacterial cells was organized at two scales in the subsoil, and at a single scale

in the topsoil.  Studies conducted in agricultural and shrub-steppe ecosystems suggest

that microbial biomass and activity may be spatially dependent at scales less than 1 m,

nested within a larger scale related to variations at the landscape level (Robertson et al.,

1997; Ronimus et al., 1997; Smith et al., 1994).  The presence of nested scales of
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variation suggests that the various factors regulating the development of microbial

communities in the soil ecosystems may operate at different scales (Robertson and Gross,

1994), and a simultaneous analysis of the multi-scale spatial variability of microbial

community structure and the associated microenvironment could help identify these

factors and determine their relative influence.  

1.3.  Research Motivation

Increased research into the spatial distribution of microorganisms and microbial

communities has many ecological and environmental applications.   For example,

scientists are often interested in understanding issues of scale (spatial and temporal), in

part, because of a desire to make predictions about ecosystem processes using

information gathered at a smaller scale, or vice versa, i.e., upscaling and downscaling

(Stein et al., 2001).  This is a pressing issue because calculations of the effects of human

activities on ecosystems often need to be made at spatial scales that far exceed the scale

at which measurements are made (Schneider, 1994).  For example, rates of nutrient

processing through an ecosystem are generally calculated based on information measured

for a few sampling locations.  However, a direct scale-up of these rates is not appropriate

unless one assumes that the factors that influence nutrient cycling are distributed

homogenously across the landscape and over time.  The reliability of such an estimate

may be greatly increased by incorporating some information about the spatial and

temporal distribution of the process of interest into any models or calculations

(Schneider, 1998).  Moreover, the increase in spatial scale may result in new interactions 
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and relationships, and a change in system organization, so that a change in the level at

which one wishes to understand or quantify a process cannot necessarily be addressed by

simply changing scale (O'Neill and King, 1998).

Another important issue for scientists designing and planning field experiments is

resolution, and the need to make decisions about the appropriate scale for collecting data.

In some cases, information collected at finer scales may be too noisy, and may obscure

the detection of large-scale relationships.  Alternately, our ability to detect relationships

between large-scale processes may be inhibited by the loss of fine-scale information; for

example, Hewitt et al. (1998) detected fewer relationships between environmental

variables and communities using coarser resolution in a comparative study.  Ultimately,

the scale used for an analysis must be determined based on the processes of interest, and

different scales may be appropriate for different ecological questions.  This information is

necessary for scientists to design effective sampling schemes for the environment, and

changing the number, location, and size of samples collected may influence one’s results.

For instance, Parkin et al. (1987) studied the effect of sample size on determination of

soil denitrification rates, and found that smaller samples provided significantly lower

estimates of the mean denitrification rate than did larger samples.

While many ecological theories and models acknowledge that elements that are

close to one another in space or time are more likely to be influenced by the same

generating processes, the same energy inputs, or a similar physical environment

(Legendre and Fortin, 1989), the classical statistical procedures employed to analyze

these phenomena assume independence of observations.  Statisticians generally count one

degree of freedom for each independent observation, which allows them to choose an
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appropriate statistical distribution for testing; the lack of independence that arises from

the presence of spatial autocorrelation makes it difficult (in many cases, impossible) to

accurately determine the number of degrees of freedom and correctly perform tests such

as correlation, regression, or analysis of variance.  Positive autocorrelation reduces

within-group variability, artificially increasing the amount of among-group variance, and

often leads to the determination that differences among groups are significant, when in

fact they are not (Legendre et al., 1990). Violations of the assumption of independence

and inappropriate application of these statistical procedures to spatially autocorrelated

data may lead to incorrect conclusions.  Therefore, understanding the type and extent of

spatial variation in microbial systems is necessary in order to perform appropriate

statistical analyses and to design reliable sampling schemes for the environment.

Increased knowledge of the spatial distribution of microorganisms and microbial

communities in the environment also has many environmental applications, e.g.,

determining the impact of various land management practices on microbial communities

or estimating biodegradation rates.  In particular, agricultural land management practices

have been shown to reduce heterogeneity in soil characteristics, which may influence the

microbial community and nutrient cycling.  Webster et al. (2002) found a decrease in the

diversity of certain microbial populations in response to a fertilizer application, and Parry

et al. (1999) correlated differences in denitrification rates between pasture and cropped

soil with differences in pore space structure in soil clods.  Biodegradation rates may also

be strongly influenced strongly by the spatial heterogeneity of environmental conditions

and microbial distributions at many different scales.  At the microscale, the placement of

certain organisms, relative to transport pathways through the soil matrix or substrate
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availability, could be particularly important.  For example, the spatial distribution of

bacteria in soil, relative to pore networks or organic matter deposits, is thought to

influence the degradation of groundwater pollutants (Nunan et al., 2001).  At larger

scales, high spatial variability is a key problem when quantifying methane emissions

from soils at both the meter scale (Adrian et al., 1994; Wachinger et al., 2000) and the

landscape scale (Valentine et al., 1994), and it is thought that different processes are

responsible for this variation at different scales.  Wachinger et al. (2000) demonstrated

that CH4  production was strongly correlated to the presence of fresh organic carbon at the

cm- to meter-scale, while hydrologic regime was important at larger scales.  

1.4.  Research approach 

For my dissertation, I examined the local (relatively small-scale) spatial

distribution of microbial community structure in the environment, considering a number

of different ecological settings and a variety of different spatial scales (from nl to ml, and

from centimeters to hundreds of meters).  These issues were addressed through a series of

field studies and laboratory microcosm experiments designed to consider many issues

related to spatial variability, including the importance of grain size, sampling extent, and

environmental heterogeneity.  Overall, this document presents empirical evidence and

theoretical arguments that demonstrate the importance of a spatially explicit approach to

the study of microbial communities, and it specifically addresses the implications of

spatial variability for the structure and function of microbial communities.  General

issues addressed include: (i) How are microbial communities organized in space? (ii) Can

these distribution patterns be explained by considering spatial heterogeneity in the
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physical-chemical environment?  What does this tell us about the environmental factors

that are important for controlling microbial community structure? and (iii) How should

spatial variability be considered in experimental sampling designs and statistical

analyses?

Analyzing the distribution of community structure can provide some information

about the scale at which microbial communities organize in the environment and may

indicate relevant scales for sampling and studying microbial community structure.

However, without a good understanding of how community structure and function are

related, this information is of somewhat limited value for researchers who also want to

understand the distribution of microbial community activity in the environment.

Understanding the relationship between the structure and function of a community is

necessary before scientists can anticipate how habitat disruption may influence the

performance of a microbial community in an ecosystem, and is especially important if

one wishes to use structural assays to make these predictions.  To this end, a second

portion of my dissertation research has focused on comparing community structure and

diversity with community function and examining the role of functional redundancy in

microbial systems.  For these experiments, I used laboratory batch culture experiments to

examine how manipulation of overall diversity (via serial dilution) can impact the in situ

function and overall functional potential of a microbial consortium.  Because the dilution

procedure is essentially obtaining smaller and smaller samples from the environment,

these studies can also be interpreted as looking at how microbial community structure

and function change at very small scales (from 1 nl to 1 ml total sample size).  
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1.5.   Dissertation organization 

The chapters of my dissertation take the form of several manuscripts.  Most of

these manuscripts have already been completed and published, and I expect to submit the

final two shortly.  These chapters generally follow the format of a standard scientific

article, and each includes an independent abstract.  A single reference list has been

compiled, and is included at this end of this dissertation.  Given that each research paper

was originally written to stand alone, some of the introductory material in each chapter is

repetitive.  This is particularly true when different investigations used common

methodologies.  I have chosen to leave these sections unmodified in order to preserve the

integrity and consistency of the original research papers.  The reader may notice that, in

some situations, the statistical or analytical techniques presented in later chapters could

also have been applied to datasets from the earlier experiments.  Rather than presenting a

reanalysis of these earlier experiments, only the original work is provided.  However, any

situations where the statistical methods developed in later chapters would have

influenced the conclusions of the earlier research have been noted and discussed.  

1.6.  Summary of specific research objectives

The research objectives of this dissertation may be divided into three general

categories: (i) development of analytical methods for microbial community analysis, (ii)

analysis of spatial structure in microbial systems, including issues related to statistical

techniques and experimental design, and (iii) questions regarding the relationship of 
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microbial community structure and function.  The research conducted to address these

questions may be conveniently divided two groups: laboratory and field experiments, and

specific objectives for each category are presented below.

1.6.1.  Laboratory experiments

In order to investigate the role of sample size on the analysis of microbial

community structure and function at very small spatial scales, a series of microcosm

experiments were performed using serial dilutions of a sewage microbial community to

inoculate a set of batch culture experiments in sterile sewage.  Regrowth of the diluted

mixture was used as a way to generate sufficient biomass to analyze, and each regrown

culture represented the composition of progressively smaller fractions of the original

community.  These experiments provided a means of comparing community structure and

function at very small scales, as samples corresponded to a habitat size of 1nl to 1 ml

(community size: ~ 1 cell to 108 cells).  This approach allowed us to consider differences

over several orders of magnitude, which could not have been accomplished practically

with larger sample sizes (e.g., 1 ml, 100 ml, 1 L, 10 L, 100 L, etc.).  A main objective of

this work was to determine how the structure and function of communities in smaller

spatial units differs from that determined by measuring larger spatial units.  

These experiments also addressed the issue of functional redundancy in microbial

communities and provided a way of studying how microbial community function may

change as community structure changes.  In addition to differences in effective sample

size of the microbial community being considered, the dilution/regrowth technique

provided a way of systematically manipulating microbial community diversity. 
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Probability suggests that dilution of a relatively diverse community will remove rare

organism types, creating mixtures of cells differing in species richness in each successive

dilution.  Regrowth of these diluted mixtures should then produce cultures of roughly the

same biomass, but differing in overall diversity.  The objectives of this portion of the

dissertation were:

 To examine the relationship between sample size and microbial
community analysis.  In particular, these studies considered how
small a “community” sample can be and still have the same structure
and functional ability as a larger sample. 

 To compare several procedures for monitoring microbial
community structure and to determine whether genotypic assays
(i.e., DNA-based techniques) provide results similar to phenotypic
ones (e.g., CLPP).    

 To examine the relationship of microbial community structure and
diversity to community function.  The importance of functional
redundancy in diverse microbial communities was studied by
examining how the removal of organism types from the mixture
impacted the overall in situ function of the community.

Chapters 3 and 4 of this dissertation present the results of the dilution/regrowth

experiments.  In general, the discussion focuses on the interpretation of these results as

they relate to the 2nd and 3rd objectives listed above, as the implications of the work in

that area are less straightforward than the interpretation with regards to the issue of

sample size.  Chapter 3 focuses on the development of the dilution/regrowth approach,

and compares the results of several microbial community analyses with a series of

numerical simulations, while Chapter 4 examines the relationship between microbial

community structure, diversity, and community function.  
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Part of the goal of these lab experiments was to compare several different

procedures for monitoring microbial community structure.  In addition to the

comparisons presented in Chapters 3 and 4, I also performed some research to adapt two

DNA fingerprinting techniques (RAPD and AFLP), commonly used in population

biology, to the analysis of microbial communities.  Chapter 2 discusses the application of

RAPD to the analysis of microbial community structure in stream and groundwater

samples, and includes a discussion of the relationship of these types of DNA

fingerprinting techniques with other whole-community assays.  The application of AFLP

to microbial community samples is presented as part of Chapter 3.   

The experimental results presented in Chapters 3 and 4 were in good agreement

with the numerical simulations (Chapter 3), and demonstrate that the dilution/regrowth

approach is a useful means of creating communities varying in overall diversity and

community structure.  Moreover, the findings from the various analytical techniques were

quite similar, and the genotypic and phenotypic assays were consistent with one another.

However, different methods were sensitive to different types of changes in community

structure (e.g., richness versus evenness), and these results highlight the importance of

using multiple approaches to compare microbial communities.  

Chapter 4 specifically addresses the issue of functional redundancy in diverse

microbial communities, and uses the dilution/regrowth approach to examine the

relationship between microbial community structure, diversity, and in situ function of a

sewage microbial community.  Heterotrophic uptake experiments were performed using

five different 14C labeled substrates, and there were no significant differences between

communities in either the rate of uptake of a substrate or the assimilation efficiency for
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any of the compounds studied.  The fact that function was maintained, despite the loss of

diversity and change in community structure, indicates that functional redundancy was

quite high within the original microbial consortium and may have conferred some

functional stability on the assemblage.  For each organism type eliminated during the

dilution process, at least one of the remaining organism types was able to provide the

same function at the same level as the lost type.  

With regards to sample size and spatial issues, the results presented in Chapters 3

and 4 indicate that different patterns of community structure may be detected by

collecting samples of different sizes, but this relationship is controlled by the relative

distribution of the different organism types.  If the community has a relatively even

distribution (approximately equal numbers of each type), then changes in sample size will

not necessarily lead to changes in the perceived community structure – until the sample

size is so small that the number of organisms collected is less than the richness present in

the largest sample size.  This result was not particularly surprising, and implies that

differences in community structure will be only detected when samples sizes differ by

several orders of magnitude.  However, the results indicate that very large differences in

community structure may be observed over relatively small intervals (e.g., 0.1 ml to 1 ml)

if the community is not evenly distributed.  

1.6.2.  Field studies

For this portion of my dissertation, I chose three sites on Virginia’s Eastern shore:

a shallow groundwater aquifer, salt-marsh creek bank sediment, and an agricultural wheat

field.  The microbial communities inhabiting these areas were sampled at a variety of
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spatial scales (from 2.5 cm to more than 150 meters), and compared using geostatistical

techniques.  Whenever possible, information on the physical-chemical environment

associated with each sample was also collected to determine if habitat variability was

correlated with differences in microbial community structure.  

At two of the sampling sites (the groundwater aquifer and the salt-marsh

sediments), the environmental heterogeneity was such that sets of samples were taken

from different chemical or hydrological zones, but were spatially proximal and

environmentally contiguous.  For these sites, I considered the spatial distribution of

communities within and across zones.  The wheat field site was selected because of its

relative homogeneity of environment (at the scale the researcher could perceive) in hopes

that I would be able to study the spatial distribution of the communities with fewer

confounding factors than in the first two studies.  In addition, a sampling scheme was

developed that allowed me to assay for multiple scales of organization within a single

plot.  The specific objectives of this portion of the dissertation were:

 To demonstrate the presence of spatial autocorrelation in
microbial community structure in heterogeneous and homogeneous
(at the scale perceived by the researcher) environments.  

 To quantify the microbial community patch size in each
environment, and to estimate the spatial dependence (the percent of
variance in that data that can be explained by considering the spatial
separation of the sampling units) in each system. 

 To investigate the presence of multiple scales of spatial
organization in microbial systems.
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 To compare the correlation length scale of the microbial
communities with the correlation length scale of the physical-
chemical habitat variation, in order to evaluate whether spatial
patterns in microbial properties can be linked to chemical or physical
factors that affect, or are affected by, microbes directly.  

 To determine whether larger-scale differences in community
structure may be correlated with overall differences in the
physical-chemical habitat.  

 To examine whether different microbial properties (e.g.,
abundance and community structure) have different distribution
patterns. 

Chapter 5 presents the results of the study performed at the shallow groundwater

aquifer, which contained distinct regions of anaerobic and aerobic groundwater.  Several

wells in each region were sampled, with separation distances ranging from 10 m to more

than 150 m, and RAPD fingerprinting was used to analyze microbial community

structure.  Within the aerobic zone of the aquifer, where the groundwater chemistry was

fairly homogeneous, the communities from the various wells were quite similar; the

degree of similarity among the communities in the anaerobic region was less, and

reflected a higher level of variation in the chemical conditions in that portion of the

aquifer.  There was no relationship between the genetic relatedness of a pair of

communities and their spatial separation, either within or between chemical zones,

suggesting that community patch size was smaller than the smallest sampling separation

distance (10 meters).  However, a strong correlation between environmental similarity

and community similarity was detected, and the results indicate that the communities

may track spatial and temporal variation in the environment to the extent that they may

converge genetically as their environments become more similar.  
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Chapter 6 presents the results of a similar study performed to characterize the

fine-scale spatial variations of microbial communities in sediment obtained from a salt-

marsh creek bank.  Samples (1 cm3) were collected at 5-cm intervals along a 215-cm

horizontal transect, over a 50-cm elevation gradient.  A geostatistical analysis

demonstrated a strong spatial autocorrelation for both bacterial abundance and

community structure (RAPD DNA fingerprinting).  The results indicate that processes

more correlated with elevation vary at a smaller scale (therefore producing smaller patch

sizes) than processes controlled by distance from the creek bank.  Moreover, the

processes that control microbial abundance in this system operate at a scale larger than

those that control community structure.  As in the groundwater study, a strong coupling

of physical-chemical environmental and microbial community structure was observed.  In

particular, the study suggests that factors such as inundation frequency, during and extent

of flooding, sediment moisture content, and sediment redox status may be important

factors controlling microbial community structure. 

To compare with the earlier studies examining the spatial distribution of microbial

communities in heterogeneous environments, I also examined the spatial variability of

microbial communities in an agricultural wheat field. Nearly 200 soil samples were

collected at a variety of separation distances ranging from 2.5 cm to 11 meters.  The

analysis of microbial community structure in this field is presented in Chapter 7.  In

general, the results indicate a remarkable degree of spatial structure was present in this

pedagogically homogeneous site that has been ploughed and cropped as a single field for

several years.  Multiple scales of spatial autocorrelation were found, and, in some 
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locations, up to four distinct correlation length scales were detected.  Maps of the spatial

distribution of community structure indicate that different portions (subsets) of the

microbial community had different distribution patterns.  

In an effort to better understand the factors that may influence microbial

community organization at various spatial scales in soils, the results presented in Chapter

7 were compared with an analysis of the distribution patterns associated with several soil

physical-chemical properties (soil carbon (C), nitrogen (N), organic matter (OM), and

texture (sand, silt, and clay content)).  Geostatistics demonstrated the presence of

multiple scales of spatial autocorrelation for all of the environmental variables, and the

patterns on the kriged maps were similar to those previously observed for microbial

community structure.  Simple causal modeling was used to study the direct relationship

between each environmental property and each microbial community property, and the

results indicate that there is a strong correlation between these two sets of variables, in

excess of their shared spatial patterns.  In general, soil C and N content was strongly

correlated with community structure at all of the scales considered, while other properties

(OM and texture) were only correlated with specific subsets of the community.  The

models developed for larger spatial scales were more complex and indicated a stronger

role of spatial heterogeneity in controlling microbial community structure, compared to

models developed for finer spatial scales (≤ 40 cm).  
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Chapter 2.

Characterization of Microbial Communities Using 
Randomly Amplified Polymorphic DNA (RAPD).

Franklin, R. B., D. R. Taylor, and A. L. Mills.  1999.  
Journal of Microbiological Methods.  35:225-235.
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Abstract

Similarity among a number of aquatic microbial communities was examined using

Randomly Amplified Polymorphic DNA (RAPD), a common polymerase chain reaction

(PCR)-based DNA fingerprinting technique.  After amplification of whole-community

DNA extracts, the PCR products were resolved by agarose gel electrophoresis and the

band patterns compared to determine percent similarity.  Twelve different primers were

used to amplify approximately 100 fragments (total) from each DNA sample; the bands

were scored as present or absent and the similarity between each sample was determined

using Jaccard’s coefficient.  From this information, dendrograms were constructed and a

bootstrapping procedure was used to assess how well supported the tree topologies were.

Principal component analyses (of the presence/absence data) were also conducted as a

means of visualizing the relationships among samples.  Results obtained for two different

experimental systems (a pair of tidal creeks and several wells in a shallow groundwater

aquifer) correlated well with the temporal and spatial variations in environmental regime

at this sites, confirming that arbitrarily primed PCR-based DNA fingerprinting

techniques such as RAPD are useful means of discriminating among microbial

communities and estimating community relatedness.  Moreover, this approach has

several advantages over other DNA-based procedures for whole-community analysis; it

is less laborious and uses smaller quantities of DNA, making it amenable to sample-

intensive monitoring, and it does not depend on culturing or the use of selective PCR

primers.    
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2.1.  Introduction

The abundance and diversity of microorganisms in a given environment is

typically enormous.  As a result, it is not possible to get a complete sense of the relative

numbers and identities of the constituent organisms in a microbial community with any

of the currently available analytical techniques.  It is similarly impossible to thoroughly

understand the function of each individual organism type, the specific interactions that

may exist between populations, or the independent influences organisms may have on

ecosystem processes.  This inability to completely categorize the constituents of a

community has hampered the efforts of microbial ecologists to investigate fundamental

ecological concepts such as community diversity, succession, redundancy, or stability. 

 Culture-based studies provide the framework from which microbial ecologists

derive much of their current understanding of microbial interactions and community

dynamics; however, the fraction of organisms that have been cultured is thought to be

less than 1% of the total (Holben, 1997).  In order to comprehend the full extend of the

relationships with a microbial community, and between a community and its

surroundings, researchers must be able to evaluate attributes for an entire community

without relying upon microbial growth for detection.  This need has led to development

of several approaches that use whole-community samples for analysis, with much of the

research focusing on the use of whole-community DNA extracts (Griffiths et al., 1996;

Holben, 1997; Ogram and Feng, 1997).  Commonly used techniques include DNA

hybridization (Griffiths et al., 1996; Lee and Fuhrman, 1990; Lee and Fuhrman, 1991),

percent G+C content (Holben and Harris, 1995), DNA reassociation (Britten et al., 1974;
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Torsvik et al., 1994), and RFLP (Restriction Fragment Length Polymorphism (Stahl,

1997)).  The primarily limitation of these procedures is that they require rather large

amounts of relatively pure DNA for analysis.  The need for large quantities of DNA often

means that sample collection can be very time consuming (e.g., filtering large volumes of

water), and that samples may need to be gathered over a relatively large area (e.g.,

several grams of soil or sediment), thus making it impossible to examine small-scale

spatial differences in community structure.  Moreover, the analyses themselves are very

time consuming, further limiting the feasibility of large and comprehensive studies of

microbial communities.  

The application of polymerase chain reaction (PCR) to microbial ecology has

helped to reduce some of these problems, in particular those resulting from the need for

large quantities of DNA, and has eliminated the need for extensive concentration of cells

from environmental samples.  PCR has proven especially useful in the study and

comparison of the DNA sequences of the genes coding for rRNA.  Some of the rDNA

studies compare individual sequences to a database of previously encountered (generally

cultured) organisms (Devereux and Willis, 1995) in order monitor the distribution of

“phylotypes” (distinct groups of related DNA sequences) in the environment (Wise et al.,

1997).  Inevitably, the comparison, and the database construction, includes some cultural

bias.  Other researchers studying rDNA have taken a different approach – without

attempting to link the sequences with known taxa, they examine the diversity of

“fingerprints” derived from manipulation of rDNA sequences (e.g., ARDRA – Amplified

Ribosomal DNA Restriction Analysis (Massol-Deya et al., 1995; Weidner et al., 1996),
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DGGE – Denaturing gradient Gel Electrophoresis (Ferris et al., 1996; Øvreås et al.,

1997), and T-RFLP – Terminal Restriction Fragment Length Polymorphism (Liu et al.,

1997)).  However, these techniques have still been criticized because the “universal PCR-

primers” used for the PCR amplification of the 16S or 23S rRNA genes may not amplify

fragments from all community members with equal efficiency (Pepper and Pillai, 1994).

Nevertheless, such approaches provide a significant improvement over the 0.1 – 1 % of

the community accessible with standard culture-based techniques.  

The present research examined another PCR-based DNA fingerprinting approach

as a means of comparing microbial communities, and focused on the development of a

community-level technique that uses very small quantities of DNA and has no need for

culturing or the use of selective PCR primers such as those used in rDNA studies.  In

particular, RAPD (Randomly Amplified Polymorphic DNA (Williams et al., 1990)) was

used to compare a number of aquatic microbial communities and quantify their overall

similarity.  RAPD employs short primers of arbitrary sequences to amplify random

portions of the sample DNA by PCR.  Since each primer is short, it will anneal to many

sites throughout the target DNA; a fragment is amplified whenever two of these primers

anneal close enough together and in the proper orientation with respect to one another.  In

individuals that have different sequences, the primers will anneal in different places, and

therefore produce a different spectrum of fragments from the PCR – a different genetic

“fingerprint”.  Because each primer generates relatively few (5 to 15) distinct bands when

separated on an agarose gel, several reactions must be run, using several different 
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primers, and the results combined to obtain the desired number of markers.  Pooled

results can then be compared between samples and percent similarity computed.  Using

multiple primers also helps ensure that a sufficiently large region of the target DNA is

scanned when an estimate of overall variance between samples is desired (Ogram and

Feng, 1997).  Typically, 10 to 15 primers (∼ 100 bands) are required for statistical

comparison of samples using RAPD markers (Demeke and Adams, 1994; Xia et al.,

1995).

RAPD is commonly used to differentiate among closely related strains of bacteria

(Busse et al., 1996; Chachaty et al., 1994; Lin et al., 1996; Makino et al., 1994), and use

of this technique for mixed genome samples has been suggested, though experimental

applications are rare (Bruce et al., 1992; Moll et al., 1998; Picard et al., 1992; Xia et al.,

1995).  Previous work with individual genome samples has shown that RAPD provides

results that are very consistent with other molecular genetic techniques including RFLP

(Karp et al., 1996; Paffetti et al., 1996), AFLP – Amplified Fragment Length

Polymorphism (Powell et al., 1996), and DNA hybridization (Tanaka et al., 1994).  

In this research, the usefulness of RAPD for comparing microbial communities

was evaluated in two aquatic systems.  The first was a pair of tidal creeks (Hungars

Creek and Phillips Creek) that were compared twice during the summer of 1997 (June

and July).  The second application examined the groundwater microbial communities

from anaerobic and aerobic zones of a shallow coastal plain aquifer on Virginia’s eastern

shore.



39

2.2.  Materials and methods

2.2.1.  Site descriptions

2.2.1.1.  Tidal creeks

Creek water samples were collected from the Virginia Coast Reserve Long Term

Ecological Research site (VCR-LTER) on Virginia’s eastern shore.  Two marsh creeks,

one on each side of the Delmarva Peninsula, were sampled during the summer of 1997

(June and July).  Phillips Creek, on the seaside of the peninsula, contains an extensive

marsh system (135 ha) while Hungars Creek, on the Chesapeake Bay side, is much wider

and shallower with a smaller area of marsh (35 ha).  The two creeks are separated by less

than 7 km and, consequently, may be compared without major differences in regional or

local climate, land-use patterns, or tidal amplitude (MacMillin et al., 1992).  A number of

biological and physical-chemical parameters differ between these two creek systems

including higher organic matter, bacterial biomass, abundance, and productivity in

Hungars creek and greater nutrient concentrations (e.g., phosphate, ammonia, nitrate, and

nitrite) in Philips Creek (MacMillin et al., 1992).  The dissolved organic carbon (DOC)

source also differs for the two systems; Hungars Creek’s DOC is primarily derived from

phytoplankton while marsh grass/detritus is the main DOC source for Phillips Creek. 

2.2.1.2.  Groundwater

The groundwater samples for this study were collected from a shallow coastal

plain aquifer near Oyster, Virginia.  The research site occupies an abandoned agricultural

field (1.7 ha) that overlies distinct regions of anaerobic and aerobic groundwater. 
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Samples were collected in August 1997 from four wells, two aerobic (B3 and C3) and

two anaerobic (D1 and W2).  The groundwater chemistry between these two regions of

the field differs substantially, primarily in the amount of dissolved oxygen, alkalinity,

nitrate, ammonia, and dissolved iron present (Knapp, 1997).  Average microbial

abundance also differs between the wells (D1: 5 x 106 cells ml-1; W2: 3 x 107; C3 and B3:

3 x 105 (Lancaster and Mills, 1995)).

2.2.2.  Sample collection

To isolate the microbial community for analysis, water samples were filtered

onto 0.22 µm pore-size polycarbonate membranes after pre-filtration through AE

glass-fiber filters (which removed particulate matter and eukaryotic organisms).  Five

and twenty liters of water were filtered for the groundwater and creek samples

respectively.  The DNA from the creeks was collected in conjunction with another

research project, so a larger volume of water was sampled at that site.  At both sites,

the amount of DNA collected was far in excess of that necessary for RAPD

community profiling (see below).  For the groundwater sites, three replicate five-liter

fractions were collected in the field so that within-well and between-well variance

could be compared.  All filters were transported to the laboratory on dry ice and stored

at -70°C until the DNA was extracted.
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2.2.3.  Extraction of DNA

2.2.3.1. Recovery of cells from filters

DNA from the creek sites was extracted directly from the filters (Fuhrman et

al., 1988), quantified using UV spectroscopy, and stored at - 20°C.  For extraction

from the groundwater samples, bacteria were recovered from the filters by vortex

mixing and repeated centrifugation prior to extraction.  Specifically, the membranes

were cut with scissors into small pieces using aseptic technique, resuspended in ∼30

ml of sterile water, and vortex-mixed for 2 min.  The supernatant was collected and

the filter pieces were resuspended and mixed a second time.  The two liquid fractions

were pooled and filtered through an AE glass-fiber filter to remove small pieces of

the membrane.  The bacterial suspension was then centrifuged in two 50-ml

centrifuge tubes at 4°C at 30,000 × g for 30 min.  All but 5 ml of the supernatant were

discarded; the tube contents were resuspended and the liquid from the two tubes

combined.  This consolidation procedure was repeated several times as necessary

until the cell suspension could be transferred into a single 1.5-ml microcentrifuge

tube.  Acridine orange direct counts (Hobbie et al., 1977) were performed on this

suspension in order to normalize the number of cells that entered the DNA extraction

procedure, which provided a means of standardizing the amount of DNA entering

each PCR reaction.  
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2.2.3.2.  DNA extraction from groundwater cell suspensions

Depending on the concentration of cells in a given suspension, different volumes

were removed corresponding to a total of approximately 5 × 107 cells.  Cell pellets were

collected from these different volumes by centrifuging in a microcentrifuge for 5 min at

14,000 rpm.   After discarding the supernatant, 500 µl of buffer (0.02 M Tris (pH 7.8),

0.02 M EDTA (pH 8.0), 0.5 % sodium dodecyl sulfate) was added and the pellet

resuspended by vortex mixing.  A boiling water bath was then used to lyse the cells (5

min), and 500 µl of phenol:chloroform:isoamyl alcohol (25:24:1) was added.  The

mixture was then centrifuged for 5 min as described above.  The aqueous layer was

transferred to a  new tube and, after a second phenol extraction, the DNA was

precipitated using an equal volume of cold isopropanol (500 µl).  The DNA was

centrifuged for 2 min and the pellet was washed twice with ice cold 70% ethanol.  The

DNA was dried, resuspended in 25 µl of sterile, filtered, deionized water, and stored at –

20 °C.

2.2.4.  RAPD amplification

2.2.4.1.  Amplification conditions

The PCR reactions were performed using the protocol from Williams et al. (1990)

with slight modification.  Specifically, 5 µl of the template DNA was added to a 20 µl

reaction mixture containing:  10 mM Tris-Cl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 100

µM each of dATP, dCTP, dGTP, and dTTP, 0.2 µM primer, and 1 unit of Taq DNA

polymerase.  Amplification was performed in a Perkin Elmer 480 DNA Thermal Cycler
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programmed for 45 cycles of 1 min at 94°C, 1 min at 36°C, and 2 min at 72°C.

Amplification products were separated by electrophoresis in 1% agarose gels, stained

with ethidium bromide, and photographed under UV light. 

2.2.4.2.  DNA template concentration

For the tidal creek samples, several dilutions of the original DNA template were

tested to determine the appropriate DNA concentration for the PCR reaction.  Serial

dilutions of the original stock were prepared in sterile, filtered deionized water, and 10-3,

10-4, and 10-5 dilutions all generated similar profiles; this trend was confirmed for five

different primers.  A 10-4 dilution, which corresponds to 225 picograms of DNA per PCR

reaction, was used in all subsequent amplifications of the creek community DNA.  For

each creek DNA sample, three replicate PCR reactions were performed in order to assess

the repeatability of the RAPD procedure.  

For the groundwater samples, 10-2, 10-3, 10-4 serial dilutions of the original DNA

stock all produced similar RAPD fingerprints (screened using five primers), and a 10-3

dilution was used in all further reactions.  This dilution corresponds to amplification of

DNA extracted from 2000 cells or an original sample volume from the well of 0.24 µl

(using the average bacterial concentration of the four wells = 8.9 × 106 cell ml-1).

Additionally, since the 10-4 dilution produced similar profiles, it is possible that as few as

200 cells (equivalent to an original sample volume of 0.02 µl) could be used in each

RAPD reaction.  
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2.2.4.3.  Primer selection

Forty different primers (purchased from Operon Technologies, Alameda,

California) were tested for their ability to provide readily interpretable and reproducible

RAPD profiles.  Fourteen of these were selected for use in this study (Table 2.1).

Though the choice of primers is somewhat subjective, criteria such as number of bands

produced, clarity and distinctness of bands, and reproducibility of the RAPD fingerprints

were used in the selection process.  Another criterion that should be considered when

selecting a primer is its ability to detect differences among the samples of interest; a

primer that gives identical band patterns for all samples does not help discriminate

among communities.  This final criterion did not significantly influence primer selection

in the present study as 39 of the 40 primers screened showed major differences when

tested on groundwater samples from a pair of wells (W2 (anaerobic) and C3 (aerobic)). 

From the 40 primers screened, 11 were chosen for use with the groundwater

samples.  With these, 80 different amplification products (fragments) were observed, of

which 91% were polymorphic.  Individual well samples contained between 29 and 49 of

these bands.

For the creek samples, the same 11 primers were tested and nine of them

successfully applied.  Three additional primers, not tested on the groundwater samples,

were also chosen for use with creek samples.  These 12 primers produced a total of 101

distinguishable bands, and an individual sample contained between 44 and 53 of these

bands.  Of these 101 bands, 92% were polymorphic.  
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Table 2.1.  Sequences and average number of bands generated for RAPD profiling of
creek and groundwater samples.  “NC” indicates when data were not collected using a
given primer.

Operon I.D. Sequence
(5’ to 3’)

Creeks
(# bands)

Groundwater
(# bands)

C 4 CCGCATCTAC 6 5
D 5 TGAGCGGACA 7 13
F 4 GGTGATCAGG 13 14
F 7 CCGATATCCC 7 NC
F 5 CCGAATTCCC 6 NC
F 3 CCTGATCACC 9 4
F 1 ACGGATCCTG 5 7
F 14 TGCTGCAGGT 6 NC
S 10 ACCGTTCCAG 10 5
S 13 GTCGTTCCTG 13 6
S 14 AAAGGGGTCC NC 7
T 7 GGCAGGCTGT 7 5
X 5 CCTTTCCCTC 12 5
X 16 CTCTGTTCGG NC 9
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2.2.5.  Analysis of DNA fingerprints

Each fragment visualized on the agarose gels was treated as a unit character,

scored as present or absent in each sample, and used to construct a distance matrix and

dendrogram based on the Jaccard coefficient, which calculates the proportion of positive

bands shared by each sample pair (Sneath and Sokal, 1973).  In order to assess the

statistical significance of the groupings and subgroupings in each dendrogram, a

bootstrapping procedure was employed (Stackebrandt and Rainey, 1995; Swofford et al.,

1996). This technique randomly resamples the data, alternately truncating or rearranging

the original data set, and computes the fraction of times that a branching point appears in

the recomputed trees.  This is repeated a number of times (usually between 100 and

1000), and the larger the reported bootstrap value (the proportion of times a particular

node appeared in the recomputation process), the greater the significance of the

branching point.

In this research, bootstrapping was accomplished by first using “SeqBoot” in the

PHYLIP computer program to bootstrap the presence/absence data matrix 100 times

(Felsenstein, 1993).  Each of the resultant data sets was then fed into the clustering

program of SPSS (Version 7.5.1) and similarity matrixes were determined using

Jaccard’s coefficient.  Next, distance matrices (Distance = 1 – Similarity) were

computed, and the “Neighbor” program of PHYLIP was used generate a 100 different

recomputed trees using UPGMA clustering (Norusis, 1994).  The “bootstrap value,” the

proportion of recomputed trees that contain a give node, was then determined by feeding

the tree file from “Neighbor” into the “Consense” subroutine of PHYLIP.  In addition to
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cluster analysis, principal component analysis (SPSS, Version 7.5.1) of the original data

was performed, and diagrams of the first two principal components were constructed.

Though principal components analysis is not necessarily appropriate for use with binary

data such as these, it is often used as a supplemental means of visualizing the

relationships from RAPD profiles (Demeke and Adams, 1994).

2.3.  Results and Discussion

The results of the present study suggest that RAPD is a useful technique for

studying variation among microbial communities.  For the creek water samples, RAPD

showed distinct differences between the two sites and the two times (Figures 2.1 and

2.2).  For the groundwater samples, differences between the anaerobic and aerobic zones

of the aquifer could be distinguished (Figures 2.3 and 2.4).  In both investigations, the

RAPD results correlated well with differences in the physical-chemical properties of the

various sampling sites. 

2.3.1.  Tidal creeks

Hungars Creek and Phillips Creek were compared twice during the summer of

1997 (June and July), and Figures 2.1 and 2.2 show the results of the principal

components and cluster analysis, respectively.  In general, temporal changes in

community structure were less for Hungars Creek than for Phillips (Hungars Creek –

46% similar for June/July, Phillips Creek – 38%); overall, the two creeks were 30%

similar to each other.  
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The reproducibility of the RAPD procedure was examining by profiling each

creek sample three times (three PCR reactions using the same DNA template).  PCR

repeatability was quite high with replicate community profiles averaging 89% similar

(101 bands compared).  Additionally, replicate reactions always clustered together in the

dendrogram (Figure 2.2) and grouped tightly on the principal component plot (Figure

2.1).  One of the major problems reported by users of RAPD is artifactual variation in

banding patterns for an individual DNA sample (Ellsworth et al., 1993; Meunier and

Grimont, 1993), though the magnitude of this problem varies greatly between

laboratories (Penner et al., 1993).  The results presented here suggest that, with careful

standardization of reagents and amplification conditions, the impact of PCR artifacts on

overall community profiles is negligible.  

The tree structure presented in Figure 2.2 was analyzed using the bootstrapping

procedure described above, and all nodes were very well supported (found in > 65% of

the recomputed trees).  Bootstrapping not only provided a measure of the support for

each cluster, it also confirmed that the RAPD procedure, as applied, generated enough

bands to adequately describe the relationship among the samples; random subsampling of

the dataset did not significantly alter the observed pattern.

Based upon previous work comparing the bacterial dynamics in these tidal creeks

(Lowit et al., 1998; MacMillin et al., 1992), it is not surprising to find that the microbial

communities in Hungars and Phillips creeks do differ structurally.  Though separated by

only a few kilometers, the differences in nutrient concentration, organic matter content,
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Figure 2.1.  PCA of the RAPD profiles for the creek samples.  The three points for each
site represent replicate PCR reactions of the same DNA template.  The percent of
variance explained by each PC is listed.



50

Figure 2.2.  Dendrogram displaying the results of a cluster analysis using Jaccard’s
coefficient as a measure of genetic similarity among the creek samples.  The scale along
the top represents percent similarity; the three prongs for each site represent replicate
PCR reactions of the same DNA template.  The numbers at each node are the bootstrap
values (bootstrap performed using 100 replications).
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and DOC source could support different microbial inhabitants; the two creeks were only

37 % similar in June and 30 % similar in July.  MacMillin et al.’s (1992) work also

noticed significant differences in bacteria abundance between June and July, and

differences in environmental regime between the two months (i.e., elevated nutrient

availability and higher water temperatures in July) suggest that community structure may

differ temporally.  It is especially interesting to note how the different samples were

separated by the two major principal components (Figure 2.1); principal component 1

consisted of bands that separated the creek communities by location, and principal

component 2 consisted of bands that separated the creek communities by time.

2.3.2.  Groundwater samples

Similar statistical analyses were performed to analyze the RAPD profiles for the

groundwater sites.  Aerobic wells (C3 and B3) were more similar to one another than to

either of the anaerobic sites (Figures 2.3 and 2.4).  Though the variability among

replicate well samples was larger than for the creek samples, the dendrogram (Figure 2.4)

still showed a clear separation among wells that was consistent with the observed

patterns in groundwater chemistry at this site (Knapp, 1997; Lancaster and Mills, 1995).

Historically, well W2 displays a very unique pattern in groundwater chemistry compared

to the other anaerobic wells (e.g., higher DOM, lower dissolved iron, and methane

emission (Mills et al., unpublished data), and it was the most unique well using RAPD

profiling.  Similarly, the aerobic wells have nearly identical water chemistry, are

physically separated by only 10 m, and clustered tightly as anticipated.  
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A bootstrapping procedure was again used to determine how well supported the

tree topologies were (Figure 2.4); these bootstrap values were generally lower than for

the creek water samples, indicating that the overall differences displayed in the

dendrogram of the wells were not as significant as those for the tidal creek.  Confidence

in this tree structure may be improved by increasing the number of RAPD bands

compared; for the groundwater samples only 80 bands were used, as opposed to 101 for

the creek samples.  Greater separation and more stable clusters might have been obtained

by using a larger number of bands in the analysis of the groundwater samples.  Other

studies have also shown that at least 100 bands are necessary when making RAPD

comparisons such as this (Demeke and Adams, 1994).

The three replicas compared for each well represent independent samplings

(separate 5-liter fractions of water) and show a much greater variability than was

observed for the creek samples.  It is important to recall, however, that these three values

reported for each of the creek communities are replicate PCR reactions from a single

DNA sample, and do not describe any of the within-site variability present in these tidal

creeks, nor do they reflect any of the variability from the DNA extraction procedure.  The

within-site variance for the groundwater samples was slightly higher than anticipated and

the influence of small-scale spatial heterogeneity within the aquifer may partly explain

this.  Although an attempt was made to empty the wells of any stagnant water before

sample collection, insufficient purging could mean that each fraction of water collected

represented a slightly different community experiencing different environmental

conditions. At each well, the most unique replicate was usually the first sample collected 
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Figure 2.3.  PCA of the RAPD profiles for the groundwater samples.  The three points
for each site represent independent replicas (separate 5-liter fractions of water from each
well).  The percent of variance explained by each PC is listed.
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Figure 2.4.  Dendrogram displaying the results of a cluster analysis using Jaccard’s
coefficient as a measure of similarity among the groundwater samples.  The scale along
the top represents percent similarity; the three prongs for each site represent independent
replicas (separate 5-liter fractions of water from each well).  The numbers at each node
are the bootstrap values (bootstrap performed using 100 replications).  
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(3/4 times), suggesting that the order of collection, and hence proximity of the sample

water to the well opening and air-water interface, was important. It is easy to imagine

that different fractions of well water could support different microbial communities in

different subhabitats. The fact that the anaerobic wells showed a greater within-site

variance relative to the aerobic wells (Figures 2.3 and 2.4) helps confirm this, as it is

anticipated that within-well differences in oxygen availability would be more influential

under hypoxic conditions.  

One of the most promising aspects of the RAPD technique was the small quantity

of DNA required and the ease of the DNA extraction procedure. The extraction

procedure used with the groundwater samples was a simpler, more rapid, alternative to

the Fuhrman et al. (1988) approach used in the creek water samples, and its successful

use in this study demonstrates that relatively crude DNA preparations may be used to

profile communities with RAPD. Though more variability was observed for replicate

PCR reactions of the same groundwater sample (results not shown) compared to the

repeated PCRs of a single creek sample (Figure 2.2), the contribution of this variability to

the overall variance within the groundwater wells was observed to be quite small.

Considering the small amount of DNA used in the PCR reactions, it is possible

that smaller volumes of water could be collected for an analysis of a microbial

community.  Our calculations suggest that enough DNA could be obtained from as few as

3 × 104 cells (which corresponds to ~ 3.5 µ l [0.24 µl × 15 primers] from each of the

groundwater wells in this study). In theory, even smaller samples are possible; PCR has

been used to amplify DNA from a single cell (Davis et al., 1994). Needless to say, such
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extremely small samples will not capture the genomic diversity that exists in natural

communities. The implementation of RAPD as a means of studying microbial community

structure means that sample size, and the spatial scale over which variability can be

studied, are no longer limited by technical considerations. Using more traditional

techniques, the measurements made of microbial community structure typically represent

broad-scale characterizations, and rarely consider the small scale on which the

populations may actually be interacting. However, the uneven distribution of

microorganisms in the environment suggests that community structure may vary

intensely at small spatial scales, depending upon heterogeneities in the environmental

matrix and localized nutrient availability. The very small sample size required for RAPD

profiling of communities offers a means of examining the spatial scale of the variance in

community structure that has not previously been available. Ultimately, a better

understanding of this natural variation will help microbial ecologists as they try to make

inferences about how structure influences other community-level characteristics.

2.4.  Conclusions

The results of the present study confirm that RAPD fingerprinting is a very useful

means of comparing microbial communities.  Analysis of two separate aquatic systems

provided results consistent with historical knowledge of the sites’ different environmental

regimes.  The RAPD approach has many advantages over other DNA-based, community-

level analyses including the fact that it does not involve culturing, is very rapid, and is

simple to perform.  The primers used in RAPD are not selective for specific organisms,
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groups of organisms, or particular genes, and can therefore provide a better

representation of the entire community than more traditional PCR-based approaches (e.g.,

16S rRNA).  Many RAPD primers kits are commercially available (e.g., Operon

Technologies, Genosys Biotechnologies) making primer screening and selection very

easy.  As with other PCR-based techniques, RAPD uses very small quantities of DNA,

decreasing sample collection time and permitting the analysis of fine-scale spatial

patterns in microbial community structure.  Larger-scale changes may also be monitored

if appropriate sample volumes are used.   PCR’s suitability to small, mixed, degraded,

and impure samples make it especially useful in environmental applications (Bej and

Mahbubani, 1994), and this research suggests that relatively crude DNA extracts may be

used, as was done with the groundwater samples, further increasing the speed with which

a community analysis can be performed.  Moreover, the ease of RAPD analysis means

that an appropriate number of replicates may be considered using this procedure; with

most other techniques the practical limits of replication fall short of what is necessary for

adequate statistical significance.

The primary disadvantage to RAPD analysis is the large number of primers and

PCR reactions that much be performed in order to obtain enough bands for statistical

comparison of the community profiles.  In response to this, we are investigating the

application of other PCR-based DNA fingerprinting techniques (e.g., AFLP (Zabeau and

Vos, 1993), in the analysis of microbial communities. Moreover, it is not clear at this

time how sensitive the RAPD technique is at detecting rare organisms within bacterial

communities, and this must be considered as one draws conclusions from RAPD data.
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Some have estimated the lower limit of detection to be 1% of the total DNA pool (Xia et

al., 1995), but it is likely that this ratio will vary somewhat depending upon the overall

complexity of the community.

While RAPD fingerprinting is a useful technique for comparing communities

without the limitations imposed by culture dependent procedures, it does not provide any

direct information about the constituent members of the community being examined. But,

other community-level analyses (e.g., DNA hybridization) cannot provide such

information either. Other approaches (e.g., 16S rDNA) can provide some information

about the presence or absence of some strains, but no technique exists to completely

characterize the structure of bacterial communities.  However, whole-community studies

such as these are the only means of holistically examining microbial systems and

evaluating how the entire suite of organisms responds to changing environmental

parameters.  In combination with more traditional approaches, DNA fingerprinting

techniques may allow scientists to move beyond their inability to completely categorize

the constituents of a community toward the development of a more complete

understanding of the overall interactions among bacterial populations and between

populations and the environment. 
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Chapter 3.

The impact of dilution on microbial community structure and functional potential:
a comparison of numerical simulations and batch culture experiments.

Franklin, R. B., C. H. Bolster, J. L. Garland, and A. L. Mills.  2001.
Applied and Environmental Microbiology.  67:702-712.     
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Abstract

A series of microcosm experiments was performed using serial dilutions of a sewage

microbial community to inoculate a set of batch-culture experiments in sterile sewage.

After inoculation, the dilution-defined communities were allowed to regrow for several

days, and a number of community attributes were measured for the regrown assemblages.

Based upon a set of numerical simulations, community structure was expected to differ

along the dilution gradient; the greatest differences in structure were anticipated between

the undiluted/low dilution communities and those regrown from the very dilute (more

than 10-4) inocula.  Furthermore, some differences were expected among the lower

dilution treatments (e.g., between undiluted to 10-1) depending upon the evenness of the

original community.  In general, each of the procedures used to examine the experimental

community’s structure separated the communities into at least two, often three, distinct

groups. The groupings were consistent with the simulated dilution of a mixture of

organisms with a very uneven distribution.  Significant differences in community

structure were detected with genetic (AFLP and T-RFLP), physiological (CLPP), and

culture based (colony morphology on R2A agar) measures. Along with differences in

community structure, differences in community size (AODC), composition (ratio of

sewage medium counts to R2A counts, monitoring of each colony morphology across the

treatments), and metabolic redundancy (i.e., generalist versus specialist) were also

observed, suggesting the differences in structure/diversity of communities maintained in

the same environment can manifest as differences in community organization and

function.  
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3.1.  Introduction

Ecological diversity, the variety and abundance of species in different habitats and

communities, is one of the central themes of ecology.  Diversity is commonly thought to

be a useful indicator of the well-being of an ecological system; however, there is

considerable debate in the literature over the role diversity plays in ecosystem function

(Chapin et al., 1997; Lawton, 1994; Magurran, 1988; McNaughton, 1977; Naeem et al.,

1994; Pimm, 1984; Putman, 1994; Rosenzweig, 1995).  Most of this uncertainty arises

from the practical limitations of measuring and manipulating diversity for experimental

studies.  Testing the effects of diversity on any community property or ecosystem

function requires knowledge of the diversity of the community under examination;

however, there are no methods currently available that allow microbial diversity to be

measured.  Numerous procedures are available for monitoring changes in community

structure (e.g., culture-based analyses, community-level physiological profiling (CLPP),

analysis of the lipid contents of microbial cells, and molecular genetic techniques), and

these approaches each have biases and limitations that are well documented (for review

articles, see: Bej and Mahbubani (1994), Busse et al. (1996), Garland (1996), Griffiths et

al. (1997), Holben (1997), Ogram and Feng (1997), Stahl (1997), Torsvik et al. (1994),

and White et al. (1997)).  

Despite the inability to measure diversity directly, Garland (Garland and Lehman,

1999; Garland et al., 1999) and Morales et al. (1996) successfully used “dilution” to

manipulate microbial diversity for several applications.  The premise behind these studies

was that dilution of a relatively diverse community would remove rare organism types,

creating mixtures of cells differing in species richness.  Regrowth of these diluted
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mixtures should then produce cultures of roughly the same biomass, but differing in

overall diversity.  In these studies, the various dilution/diversity communities responded

differently to invasion attempts (Garland et al., 1999; Morales et al., 1996) and to

environmental stress (Garland et al., 1999), with more diverse (less dilute) communities

being more stable and better able to withstand invasion.  However, with no good way to

evaluate or quantify microbial diversity, the magnitude of the diversity differences being

evaluated remains unknown. 

The present work sought to define the relationship between dilution and resultant

changes in diversity and community structure.  First, several numerical simulations were

performed in order to develop a set of expectations about how overall diversity

(expressed as the Shannon-Wiener index), richness (number of species or types of

organisms in the community), and evenness (the relative distribution of individuals

among these types) change with dilution.  Next, a series of microcosm experiments was

conducted using batch cultures of sterile sewage, inoculated with serial dilutions of fresh

sewage.  After regrowth of these batch cultures, several methods were used to

characterize the microbial communities, including traditional microbiological procedures,

CLPP, and molecular genetic techniques.  The regrown communities differed along the

dilution gradient, and the results followed a pattern similar to that observed in the

simulated dilution of a relatively uneven mixture of organisms.  The results of this work

will be useful in planning future studies as the ability to create natural communities

systematically differing in complexity could allow researchers to manipulate diversity,

perhaps in a quantifiable way, while evaluating its relationship to other community-level

properties (e.g., stability, invasibility, or spatial heterogeneity).
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3.2.  Materials and methods

3.2.1.  Numerical simulations

To examine the theoretical effect of dilution on community inoculum

composition, a series of numerical simulations (coded in MATLAB©) were performed.

Communities were constructed by assigning each of 106 individuals a random species

identification based on a normal distribution of integers from 1 to 1000.  The mean of this

distribution was set at 500; the variance was adjusted in order to create communities of

different initial evenness (Figure 3.1 A).  Variance levels of 100, 250, 1000, and 20,000

were used, and a perfectly even initial community was also generated (1000 types, each

containing 1000 individuals).  Dilution of each of these five initial communities was

simulated by randomly selecting 1/10th of the individuals from the array representing the

undiluted community.  The species identification of each individual in this subset was

copied to a second array, which served as the initial community for the next dilution in

the series (dilutions extended through 10-5).  For each community, at each dilution level,

richness, evenness, and diversity were calculated.  Richness (S) was taken to be the

number of organism types (species) in the community.  Diversity was expressed as the

Shannon-Wiener index (H′): 

i

i

i ppH ∑=′
1

ln

where i indicates each species or category and pi is the proportion of individuals of each

species (Shannon and Weaver, 1949).  Evenness (E) was calculated as E = H′/H′max,

where H′max = ln S (Pielou, 1969).  

∑=
i

1

ii lnppH'
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Figure 3.1.  Results of the numerical simulations of the effect of dilution on community
diversity, richness, and evenness.  (A) The distribution of individuals among 1000 types
for the initial communities used in the simulations; note that both total abundance and
richness were the same in each of the five communities.  The mean of each distribution
was set at 500, and the variance was altered to simulate communities with a dominant
(var = 100, 250, or 1000) or relatively even (var = 20,000 or even) distribution.  (B), (C),
and (D) are the simulation results and show how community structure differed in the
various initial communities for each serial dilution.  The X-axis represents the negative
exponent of the dilution factor (e.g.,“4” corresponds to a 10-4 dilution) and the Y-axis
represents: (B) richness (number of types or species), (C) evenness, and (D) the
calculated value of the Shannon-Wiener diversity index.
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3.2.2.  Batch culture experiments

3.2.2.1 Microcosm setup

Raw sewage was collected from the Cape Canaveral Air Station Wastewater

Treatment Facility (Kennedy Space Center, FL) and used as the inoculum for the

microcosm experiments.  A single large sample (2 L) was collected from the equilibration

basin and allowed to settle for approximately two hours to remove large particles.  A 10-

fold serial dilution (though 10-6) of the supernatant was prepared in autoclaved sewage;

each of these different dilutions then served as an inoculum for the batch culture

incubations.  Before dilution, the concentration of cells in the supernatant, determined by

acridine orange direct counting (AODC (Hobbie et al., 1977)), was 1.8 × 106 cells ml-1. 

The batch cultures were established by adding 1 ml of inoculum to 60 ml of

autoclaved sewage in a 125-ml Erlenmeyer flask.  Seven treatments (100 through 10-6)

were maintained in this experiment, with three replica communities at each dilution.  All

flasks were capped with sterile foam plugs to prevent contamination and kept on a shaker

table, operated at 150 rpm, to maintain aerobic conditions.  Each day, 20 ml of liquid was

removed from each flask and replaced with 20 ml of sterile sewage.  After 9 days (three

retention times), the communities were harvested and analyzed.

3.2.2.2.  Cultural counts and diversity of colony morphology

For each flask, a serial dilution of the regrown community was plated, in

duplicate, onto both R2A agar (Difco, Detroit, MI) and onto sterile sewage media (SM).

SM was prepared by mixing 15 g of agar per liter of sterile sewage supernatant.  Plates 
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were incubated at room temperature (ca. 23°C), and the number of colony forming units

(CFU) on R2A agar was determined after 3 days.  Growth on SM was evaluated after 6

days.

The diversity of colony morphologies on R2A was compared across the different

dilution treatments.  For each flask, two plates were selected; on each plate, 25 colonies

were randomly chosen and colony morphology described based on size, pigmentation,

form, elevation, and surface.  Richness (number of distinct colony morphologies),

evenness, and diversity (Shannon-Wiener diversity index) were then calculated.  

3.2.2.3.  Community-level physiological profiling

For each flask, a 10-1 dilution of the microbial community was prepared (in sterile

water) and inoculated into Biolog GN microplates.  Plates were then incubated at room

temperature (ca. 23°C).  Color formation in each of the 96 wells of each plate was

monitored by periodically (every 2 to 4 hours) measuring the absorbance at 590 nm using

a Biotek EL 320 microplate reader.  Data were normalized using a blank-corrected

average well color development of 0.75 absorbance units and analyzed using a principal

components analysis (PCA) (Garland, 1996; Garland and Mills, 1991).

3.2.2.4.  Dilution/extinction analysis of CLPP

Dilution/extinction analysis was performed on a subset of the regrown

communities (one replicate flask from each of the undiluted, 10-2, 10-4, and 10-6 dilution

treatments) to determine the relationship between cell density (I) and functional richness

(number of positive wells (R)) (Garland and Lehman, 1999).  Serial dilutions of the
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microbial suspensions were inoculated into Biolog GN microplates, incubated at room

temperature for 7 days, and absorbance at 590 nm was measured.  A positive response

was defined as any value greater than 0.25 absorbance units (after correction for the

control well) and a hyperbolic model, R = (Rmax × I) / (KI + I), where Rmax equals the

maximum (asymptotic level) of R and KI is the value of I when R is 1/2 of Rmax, was fit

to the data (Garland and Lehman, 1999).

3.2.2.5.  Molecular analysis of whole community DNA

3.2.2.5.1.  DNA extraction and quantification 

At harvest, approximately 40 ml of sample was collected from each flask and the

suspended microbial community concentrated by centrifugation (23,000 × g, 20 min).

The resultant cell pellet was suspended in 200 µl of phosphate-buffered saline (PBS) and

stored at -20°C.  Whole-community DNA was extracted using the High Pure PCR

Template Preparation Kit (Boehringer Mannheim, Indianapolis, IN) and quantified using

the PicoGreen dsDNA quantification reagent (Molecular Probes, Eugene, OR).

3.2.2.5.2.  AFLP

Amplified Fragment Length Polymorphism (AFLP) was completed using the

Perkin Elmer Microbial Fingerprinting Kit (PE Applied Biosystems, Foster City, CA)

following the manufacturer’s instructions for analysis of individual bacterial strains.

Three different pairs of primers, each with a different fluorescent label, were used for the

selective AFLP amplification:  EcoRI-AA (JOE labeled) with MseI-CA, EcoRI-AC
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(FAM labeled) with MseI-CC, and EcoRI-AT (NED labeled) with MseI-CT.  For

complete primer and adaptor sequences, and for explanation of primer selection criteria,

see the PE Applied Biosystems AFLP Microbial Fingerprinting Protocol.

Selective amplification products were resolved using an ABI Prism 310 Genetic

Analyzer following the manufacturer’s instructions with slight modification.  For each

sample with each primer pair, 1 µl of PCR product was analyzed and the sample injection

time was decreased from 12 sec to 10 sec.  Data were analyzed using the Genotyper

software (PE Applied Biosystems), and the presence or absence of each peak in each

sample was coded as 1 or 0.  This type of data matrix was prepared for each primer pair,

and the information from the three primer pairs pooled into a single large data set.  The

Jaccard coefficient was used to determine distances between samples (relative similarity),

and a cluster analysis (using UPGMA between-groups linkage) was performed.  A

bootstrapping analysis was then used to assess the significance of each group and

subgroup in the cluster analysis (Franklin et al., 1999a).  

A PCA was also performed on the original pooled data matrix  (SPSS 9.0) and

plots of the first two principal components were made.  As PCA is not strictly

mathematically appropriate for use with binary data, its application in this study was

solely to aid in visualization of the relationships among the samples and not in statistical

evaluation.  Such an approach has been used several times to compare samples profiled

using a variety of similar genetic techniques (Franklin et al., 1999a; Franklin et al.,

1999b; Wikström et al., 1999; Wikström et al., 2000); PCA generally provides the same

information (groupings and relative distances among samples) as the above outlined

cluster analysis.  
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3.2.2.5.3.   T-RFLP

Each T-RFLP (Terminal Restriction Fragment Length Polymorphism) reaction

mixture (50 µl) contained: 25 ng community DNA, 10 mM Tris-Cl (pH 8.3), 50 mM

KCl, 1.5 mM MgCl2, 200 µM each of dATP, dCTP, dGTP, and dTTP, each primer at a

concentration of 0.1 µM, and 1.25 units of Taq DNA polymerase (Liu et al., 1997).  The

bacterial 16S rRNA gene was amplified using two primers:  1392 Reverse

(5’ACGGGCGGTG TGTRC) and 27 Forward (5’AGAGTTTGATC CTGGCTCAG

(labeled with 6-FAM)).  The PCR program was:  94°C for 3 min, followed by 30 cycles

of 94°C (30 sec), 56°C (45 sec), and 72°C (2 min), with an additional final extension at

72°C for 3 min.  PCR products were purified using the Wizard PCR Preps DNA

Purification System (Promega, Madison, WI) and eluted in a final volume of 50 µl.

Separate portions (10 µl) of the purified PCR product were then digested with either the

HhaI or MspI restriction enzyme, using the manufacturer’s recommended reaction buffer

and 20 units of enzyme (New England Biolabs, Beverly, MA).  Digests were incubated at

37°C for 4 h.

The lengths of the fluorescently labeled terminal restriction fragments were

determined for each sample using the ABI 310 Genetic Analyzer.  Three microliter

portions of each digested product were mixed with 24 µl of deionized formamide and 1

µl of GeneScan-1000 [ROX-labeled] size standard (PE Applied Biosystems, Foster City,

CA), denatured at 95°C for 5 min, and quickly chilled on ice.  Electrophoresis was 
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performed using the same conditions as for AFLP, but with a 40-min run time.  Data

were analyzed using the GeneScan software (PE Applied Biosystems) with a peak height

detection of 100.  As with the AFLP analysis, the presence or absence of each T-RFLP in

each sample was determined, and the data from each restriction enzyme pooled for

cluster, bootstrapping, and principal components analyses.

3.3.  Results

3.3.1.  Numerical simulations

The results of the numerical simulations show that, while microbiologists

generally consider “dilution” to be a linear process, the response of various community-

level parameters (richness, evenness, and diversity), to such a manipulation may produce

non-linear results (Figure 3.1 B, C, and D).  There was no change in diversity (H′) of the

even community with dilution until the number of individuals (103 individuals) equaled

the number of species (103 types) at the 10-3 dilution.  With further dilution, H' decreased

in response to the rapid loss in species richness (Figure 3.1 B), though evenness remained

1.0 (Figure 3.1 C).  In each of the other initial communities, a similar trend was observed;

in general, H' remained constant until the 10-3 (var = 250, 1000, and 20,000) or 10-4 (var =

100) dilution.  After this point, diversity decreased, corresponding to the loss in species

richness and an increase in community evenness.  At the end of the dilution series (10-5),

H' of all the communities decreased to 2.30, which is the maximum theoretical value of

H' for a perfectly even distribution among 10 organisms.  The sole exception to this was 
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in the community created by setting var = 1000; here the value of H' at the 10-5 dilution

was 2.16, because only 9 species were recovered in that particular simulation whereas 10

were recovered in all the others.

The richness of the simulated communities decreased with increasing dilution, but

the magnitude of this change varied depending on the initial evenness of the mixture

(Figure 3.1 B).  For communities of low initial evenness (e.g., var = 100 or var = 250),

richness decreased rapidly with the first dilution. For initial communities that were more

even, the number of species lost in the first dilution was small; in the perfectly even

community, no species were lost.  Moreover, the relative distribution of organisms in the

perfectly even community did not change upon dilution (Figure 3.1 C). For all other

communities, evenness increased with dilution, approaching a theoretical maximum of

1.0 at the 10-5 dilution.  Maximum evenness was attained in all communities, except for

var = 1,000, which, as mentioned above, did not contain 10 species at its final dilution,

but only 9.  

3.3.2.  Batch culture experiments

3.3.2.1.  Microscopic and cultural counts

After nine days of regrowth, each experimental community was sampled, and

AODC and cultural counts were performed (Table 3.1).  An ANOVA was used to

determine whether each parameter varied significantly across the different

dilution/diversity treatments and a modified LSD (Bonferroni) test was used for multiple

comparisons.  Total cell concentrations were similar across the first several dilution

treatments (100 through 10 -4), but in the communities regrown from each of the higher
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dilution inoculum (10 -5 and 10 -6), abundance was significantly greater (d.f. = 20, F =

25.7, p < 0.00001).  Cultural counts on both SM and R2A agar showed a trend similar to

the AODC, with significantly greater concentrations of organisms in the higher

dilution/lower diversity treatments (R2A: d.f. = 20, F = 4.3, p = 0.0116, SM: d.f. = 19, F

= 3.6, p = 0.0259). 

Percent culturability on R2A agar (R2A counts divided by AODC) showed a

major increase from the undiluted inocula to the 10-6 dilution (Table 3.1). The various

treatments could be separated into three statistically significant subgroups – group 1:

undiluted (100) through 10-4; group 2: 10-3 through 10-5; and group 3: 10-6 (d.f. = 20, F =

61.01, p < 0.00001).  The average percent culturability for each subgroup was: group 1 -

9%, group 2 – 20%, and group 3 – 100%.  Percent culturability on SM was also

calculated and, though the results were not statistically significant (d.f. = 19, F = 1.97, p

= 0.1445), the same general trend was observed.  Using the subgroupings defined in the

R2A analysis, average percent culturabilty on SM varied as follows: group 1 – 12%,

group 2 – 17%, and group 3 – 44%.  The average ratio of the SM counts to the R2A

counts was also calculated from these data (Table 3.1).  For the lower dilution treatments,

growth was greater on the sewage medium than on the R2A agar, though the difference

between the two was generally not large.  However, this trend was reversed in the high

dilution/low diversity treatments (10-5 and 10-6) where growth on R2A plates was

substantially greater than on SM.  
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Table 3.1.  Average of direct and plate count analyses ± one standard deviation (when listed).  “Dilution” refers to the original dilution
used as the inoculum for each regrown community.  Each superscript letter denotes a significantly different group of communities as
determined in the text; significance was not evaluated for SM:R2A.  

Dilution
AODC

(× 106 cells ml-1)
R2A counts

(× 106 CFU ml-1)
R2A: 

% culturability
SM counts

(× 106 CFU ml-1)
SM:

% culturability
Ratio of SM counts 

to R2A counts

100 22.0 ± 10.0 a 0.7 ± 0.4 a 4.5 a 0.6 ± 0.2 a 3.2 a 1.1

10-1 13.0 ± 8.6 a 0.7 ± 0.5 a 5.1 a 1.2 ± 0.7 a 10.0 a 2.1

10-2 24.0  ± 14.0 a 1.4 ± 1.2 a 7.5 a 2.2 ± 1.2 a 13.3 a 2.2

10-3 30.0 ± 15.0 a 4.6 ± 2.7 a 14.3 ab 5.2 ± 1.7 ab 18.3 a 1.3

10-4 39.0 ± 2.8 ab 5.6 ± 1.7 a 14.4 ab 5.9 ± 1.6 ab 15.3 a 1.2

10-5 73.0 ± 19.0 b 23.6 ± 11.0 ab 32.4 b 12.4 ± 3.8 ab 18.0 a 0.6

10-6 110.0 ± 9.0 c 204.0 ± 1.9 b∗ 100.0 c † 58.1 ± 83.2 b 44.1 a 0.8

* On the R2A plates spread from two of the three 10-6 treatment flasks, colony growth was too extensive and data were recorded as
too numerous to count.  The value presented here, and used in all further calculations, was established by assuming a count of 300
CFU on the most dilute plate, for each of those replica flasks, and averaging this with the counts obtained for the remaining flask.

†  In the communities regrown from the 10-6 dilution, growth on R2A exceeded AODC and so culturability of 100% was inferred.

73
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3.3.2.2.  Diversity of colony morphologies

The diversity, richness, and evenness of R2A colony morphotypes varied across

the different dilution treatments (Figure 3.2).  Because of the high growth that occurred

on all plates spread from the regrown 10-6 dilution community, it was not possible to

evaluate these characteristics for that treatment.  However, only three colony types could

be distinguished on these plates, and all three were distinctly different from the colony

morphologies described in the other treatments.  Overall, colony diversity was highest in

the communities regrown from the undiluted inoculum, and decreased with increasing

inoculum dilution (Figure 3.2 A).  The greatest change in colony diversity was observed

between the undiluted (100) and the 10-1 regrown communities.  Richness decreased

along the dilution/diversity gradient, and the most types were also lost after the first

dilution (Figure 3.2 B).  In general, evenness increased along the dilution/diversity

gradient (Figure 3.2 C), though a decrease in evenness was observed between the

undiluted (100) and 10-1 dilution treatments.  

The distribution of each colony type across each treatment was also examined and

40 % of the colony morphologies encountered in the low dilution/high diversity

treatments (100 and 10-1 treatments were pooled for this calculation) were not recovered

from any of the other regrown communities (Table 3.3).  Furthermore, the colony

morphologies identified in the highest dilution/lowest diversity (10-6) treatment were all

unique.  All of the organisms encountered at intermediate dilutions (10-2 through 10-5)

were also described in either the 100 or the 10-1 treatments.
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Figure 3.2.  Results of the comparison of R2A colony morphology across the different
dilution/diversity communities in the batch culture experiments.  All values are reported
as the average per R2A plate ± one standard error.  Each value was calculated by
comparing 25 randomly selected colonies on each plate, using two replicate plates per
flask and three flasks for each treatment.  The sole exception to this was for the 10-4

treatment where only two of the replicate flasks were compared.  The X-axis in each of
these graphs represents the negative exponent of the dilution factor used to create the
original inoculum (e.g., “4” corresponds to a 10-4 dilution).  The Y-axis represents: (A)
diversity of colony morphologies based upon the Shannon-Wiener diversity index,  (B)
richness, the number of distinct colony morphotypes, and (C) evenness for each
treatment.
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3.3.2.3.  Community-level physiological profiling

PCA of the CLPP data showed that the various dilution/diversity communities

differed in their overall pattern of carbon utilization (Figure 3.3).  An ANOVA was

performed on the scores from the first two PC’s and two homogeneous subsets were

established. The communities regrown from the undiluted (100) through the 10-4 dilution

inocula were significantly different from the 10-5 and 10-6 dilution treatments.  This

difference was primarily due to variation in the PC 1 scores (d.f. = 20, F = 18.2, p <

0.00001); PC 2 did not contribute significantly to this separation (d.f. = 20, F = 2.23, p =

0.102).

3.3.2.4.  Dilution/extinction analysis of CLPP 

The undiluted (100), 10-2, 10-4, and 10-6 treatments were examined using

dilution/extinction analysis of functional characters in the CLPP assays.  Plots were made

of the number of positive tests obtained in the dilutions made from each regrown

community versus the number of cells (AODC) inoculated into each well of the BIOLOG

plate (Figure 3.4), and the data were fit with a rectangular hyperbola to estimate the

parameters Rmax and KI (Table 3.2).  Rmax decreased along the dilution/diversity gradient,

however, considering the confidence intervals about these estimates, it cannot be

concluded that this decrease was significant.  KI decreased significantly along the

dilution/diversity gradient; higher values of KI were found for communities that were

predicted to have a higher diversity based upon extent of dilution.
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Figure 3.3.  Results of a PCA of the CLPP data.  Each point represents the average for
the three replicate flasks maintained at each dilution; error bars represent ± one standard
error.  Each treatment is identified by the negative exponent of the dilution factor used to
create the original inoculum (e.g., “4” corresponds to a 10-4 dilution).  The percent of
variance explained by each principal component is provided. 
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Figure 3.4.  Results of the dilution/extinction analysis of CLPP for each regrown
community.  The X-axis represents the inoculum density (as measured by AODC) used in
each CLPP assay (presented on a log10 scale).  The Y-axis is the number of positive tests
for each incubation.  The results are presented as fitted lines, generated by modeling the
untransformed data with a right rectangular hyperbola; the associated regression statistics
for this fit are given in Table 3.2.  The curvature of the regression lines at lower inoculum
levels is an artifact of the log scaling of the X-axis.
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Table 3.2.  Results from the dilution/extinction analysis of CLPP.
Errors terms are ± one standard error.  “Dilution” refers to the original
dilution used as the inoculum for the regrown communities.  

Dilution Rmax KI (× 104 cells ml-1) Ra

100 163.5 ± 89.9 250 0.95

10-2 71.6 ± 9.4 5.4 ± 3.4 0.90

10-4 76.9 ± 8.6 3.2 ± 1.5 0.92

10-6 65.5 ± 7.1 0.31 ± 0.2 0.82

a Multiple correlation coefficient.
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3.3.2.5.  AFLP

Combined, the three AFLP primers generated a total of 106 unique PCR

fragments.   On average, each sample contained 22 fragments; nearly all (90%) of the

bands encountered in the low dilution treatments (100 and 10-1) were unique, while 50%

of the fragments observed in the high dilution treatments (10-5 and 10-6) were not

encountered in any of the other treatments (Table 3.3).  

Principal component and cluster analyses of the AFLP data showed that the

microbial communities in this experiment could be separated into three distinct groups

based on overall genetic composition.  The communities regrown from the undiluted

inocula (and one of the replicas from the 10-1 communities) were most unique, a second

group was formed from the communities regrown from the “middle dilution” inocula 

(10-1, 10-2, 10-3, 10-4, and one of the 10-5 replicas), and the third cluster included the

communities regrown from the very dilute inocula (10-5 and 10-6).  This pattern is most

easily visualized on the PC plot (Figure 3.5), although cluster analysis produced the same

separations (results not shown).  A bootstrapping procedure (using 100 replications) was

performed to assess the significance of the groupings obtained in the cluster analysis

(Franklin et al., 1999a).  The three clusters outlined above were recovered 93% of the

time; this high value suggests that the separation was very well supported by the data and

represents a significant difference in overall structure between the three sets of

communities.  
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Figure 3.5.  Results of a PCA of the AFLP profiles.  Data are presented for each of the
three replicate flasks for each treatment (each inoculum dilution) and the symbols used in
the figure correspond to the negative exponent of the dilution factor used to create the
original inoculum (e.g., “4” corresponds to a 10-4 dilution).  The percent of variance
explained by each principal component is provided. 
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Table 3.3.  Comparison of cultural and genetic procedures including the average number of fragments or average number of colony
types (per dilution treatment), and the relative proportion of each that were unique to a given set of communities.  “Dilution” refers to
the original dilution used as the inoculum for each regrown community. 

a Number of unique colony types (or bands) in a group of treatments divided by the total number of colony types (or bands)
encountered in each treatment group.  “Unique” refers to a colony type (or band) that was present in a particular group of treatments
(e.g., 100  and 10-1) that was not present in either of the other two treatment groups. 

R2A Plates AFLP T-RFLP

Dilution
Avg. # of

colony types
Proportion

 uniquea
Avg. # of
fragments

Proportion 
uniquea

Avg. # of
fragments 

(MspI)

Proportion 
uniquea

Avg. # of
fragments

 (HhaI)

Proportion 
uniquea

100 8 0.4 26 0.9 7 0.2 19 0.07

10-1 4.8 24 9 15

10-2 4.7 17 11 20

10-3 5.7 0 17 0.6 10 0.2 12 0.2

10-4 4 14 11 13

10-5 2.7 20 18 21

10-6 3 1.0 15 0.5 8 0.2 10 0.2

82
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3.3.2.6.  T-RFLP

 Upon digestion with the HhaI restriction enzyme, 43 different T-RFLP fragments

were produced; on average, an individual sample contained 16 of these fragments.  When

the MspI enzyme was used, 42 different fragments were detected; on average, a sample

contained 12 of these.  The number of fragments observed across the dilution gradient did

not differ for either enzyme (Table 3.3).  The proportion of bands unique to each of the

three dilution/diversity groups (100 with 10-1, 10-2 through 10-4, and 10-5 with 10-6) was

also compared (Table 3.3).

Based on the principal component (Figure 3.6) and cluster analyses (results not

shown) performed on the combined MspI and HhaI datasets, two groups could be

distinguished; the first group contained the communities regrown from the undiluted

(100) through 10-3 inoculum, while the second group contained the lower diversity/higher

dilution treatments.  Again, a bootstrapping procedure (using 100 replications) was used

to assess the significance of the results from the cluster analysis.  The highest bootstrap

value obtained (not considering bootstrap values associated with the subgrouping of the

replicate flasks) was associated with the division of the communities into three groups:

100 through 10-3, 10-4, and 10-5 with 10-6.  However, the bootstrap value for these

groupings was only 47, and it cannot be concluded that these three groups were

significantly different.  It is possible that the number of fragments being compared in the

cluster analysis was insufficient, and a higher bootstrap value might be obtained if

additional restriction digests (using different enzymes) were performed and the data

pooled prior to statistical analyses. 
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Figure 3.6.  Results of a PCA of the T-RFLP profiles.  Data are presented for each of the
three replicate flasks for each treatment (each inoculum dilution), and the symbols used
in the figure correspond to the negative exponent of the dilution factor used to create the
original inoculum (e.g., “4” corresponds to a 10-4 dilution).  Due to experimental
difficulties with the T-RFLP analysis, only one of the flasks from the 10-4 dilution
community, and only two of the flasks from the 10-6 dilution community, were analyzed.
The percent of variance explained by each principal component is provided.  
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3.4.  Discussion

3.4.1.  Numerical simulations

 Diversity is a combination of two community attributes  - richness, the number of

different types of organisms in a system, and evenness, the relative distribution of

individuals among the different types.  The more types of organism there are, and the

more nearly even their distribution, the greater the diversity of the community (Pielou,

1966).  For the numerical simulations conducted in this study, richness, evenness, and

overall diversity (as calculated by the Shannon-Wiener index) were compared (Figure

3.1).  The results suggest that dilution of a complex microbial community does not

change the overall diversity of each resultant mixture, regardless of the evenness of the

original community, until the size of the community is decreased so much so that the

number of individuals in the mixture approximates the original number of species.  After

this point, diversity must decrease with subsequent dilution (e.g., 10-4 and 10-5) because

each individual that is removed from the system always removes a species from the

community.  This result was anticipated for relatively even communities, but it was

initially surprising to discover that diversity did not change upon dilution of the more

dominant mixtures of organisms (e.g., var = 100 or var = 250 in Figure 3.1) for the early

stages of the dilution series (through 10-3).  It had been expected that dilution of these

communities would remove rare organisms from the mixture, causing overall diversity to

drop; in fact, the decrease in species richness upon dilution of the highly dominant

communities was substantial (Figure 3.1B).  However, this decrease in species richness

was accompanied by a concurrent increase in community evenness, resulting in little

change in overall diversity until a 10-4 or 10-5 dilution. 
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These results suggest that a dilution approach may be used to create communities

differing in diversity by comparing undiluted (or barely diluted) mixtures with

communities regrown from very dilute inocula.  This approach should be successful,

regardless of the diversity and dominance relationship of the starting community;

however, greater differences are to be expected for more even initial communities.

Actual experimental communities regrown from diluted mixtures are not expected to

exactly mimic these simulations, which only accounted for the dilution of the inoculum

and not for any variance in regrowth.  Synergistic and mutualistic interactions among

organisms may be disrupted by the dilution procedure and, as a result, not all of the

organism types carried through a dilution series to an inoculum may be able to regrow.

The dilution procedure also decreases competition among organisms, and this could

permit types that were not important in the original community to grow to

uncharacteristically high abundances.  Different growth rates among organisms may also

impact the diversity of the regrown communities, changing evenness from that of the

inoculum.

3.4.2.  Batch culture experiments

The results of the numerical simulations were used to make specific predictions

about the behavior of the diluted/regrown communities in the batch culture experiments.

If the initial community was evenly distributed, community structure of the regrown

mixtures would not be expected to change along the dilution gradient until the number of

cells in the diluted inoculum approximated the total number of types of organisms in the

original community.  If the initial community was unevenly distributed, the first dilution
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during inoculum preparation would have removed a large number of types of organisms

(e.g., in the var=100 community, the first dilution removed 827 types out of 1000).

However, this loss of richness would have been offset by a simultaneous increase in

community evenness, resulting in no net change in overall inoculum diversity (as

calculated using the Shannon-Wiener index).  Nevertheless, regrowth of communities so

different in richness may have resulted in a measurable change in diversity or community

structure between the undiluted and the 10-1 treatments.   After the initial dilution of an

unevenly distributed community, evenness would be greatly increased, and so differences

in subsequent dilutions (10-2, 10-3, 10-4) were predicted to be small - until the dilution

factor exceeds the original number of types of organisms in the community as described

above.

3.4.2.1.  Traditional microbiological methods

The regrown microbial communities were assayed using a number of traditional

microbiological methods; each showed that the microbial communities regrown from the

very dilute inocula (10-5 and 10-6) were unique.  Abundance (as determined by AODC

and plates counts on R2A and SM) was always significantly greater in these

communities.  It is possible that this variation in bacterial concentration was the result of

differential grazing pressure along the dilution gradient, as dilution of the inoculum could

have changed the amount of predation pressure in each treatment (Juergens et al., 1997;

Pernthaler et al., 1997; Sinclair and Alexander, 1989).  However, given the low 
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concentration of ciliates and other grazers in the undiluted inoculum (direct microscopic

observation, 1.5 x 102 organisms ml-1), the impact of these organisms on bacterial

abundance should have been small, especially when comparing dilution treatments

beyond 10-2.  

Ecological theory predicts that when interspecific competition is decreased (as

was done by dilution in this study), populations can increase substantially in abundance

(Giller, 1984).  In the present work, the inverse relationship observed between final

community size and inoculum dilution suggests that interspecific competition may be

more important than intraspecific competition in controlling total abundance.  In the

barely diluted communities (100 and 10-1), where diversity, and therefore interspecific

competition, was higher, community size was much smaller compared to the very dilute

communities (10-5 and 10-6), where diversity was low and interspecific competition was

(presumably, due to high AODC) greater. 

Percent culturability on each growth medium was much higher in the

communities regrown from the high dilution inocula.  Given that microbial growth on

culture media recovers a limited number of organisms, due to inappropriate incubation

conditions or an inability of certain types of organisms to metabolize the supplied

substrates, enhanced growth by the 10-6 community suggests that those organisms are not

as limited in their metabolic capabilities as those in the undiluted/low dilution

communities.  Furthermore, the ratio of sewage media to R2A counts changed along the

dilution/diversity gradient; communities from the high dilution (10-5 and 10-6) 
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communities preferred R2A agar, while the other communities either had no preference

or grew to higher abundances on the sterile sewage media; this result provides further

evidence that the communities in the various dilution treatments were physiologically

distinct.

The comparison of colony morphology on R2A plates showed that microbial

diversity and richness of the recoverable fraction of the community decreased along the

dilution gradient; the evenness of the communities increased.  Based upon the dilution

simulations, the greatest difference in community structure was expected between the

very dilute (10-4 or 10-5) communities and all of the others, regardless of the structure of

the original community; each of the other analytical methods employed in this research

showed this to be true.  However, the greatest difference for the diversity on R2A plates

was between the undiluted (100) and the 10-1 treatment.  The fact that any difference in

community structure was detected between these two dilution treatments suggests that the

original sewage community may have had high dominance; the fact that there was no

discernable change in overall diversity of colony types for the high dilution/low diversity

treatments (e.g., 10-4, 10-5, and 10-6) implies that the procedure may not be useful when

making inferences about microbial community structure in low diversity situations.  

One of the main criticisms of culture-based studies is that the carbon and nutrient

sources found in a single culture media are not diverse enough, so only a small fraction of

organisms in a sample actually form colonies on a spread plate. It has been suggested that

using a large number of different media types may increase the variety of organisms

recovered with a cultural approach.  In this study, a sterile sewage medium was also used

in an attempt to increase the number of types to compare when calculating the diversity
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index.  Unfortunately, the colonies that grew on the SM were quite small and generally

lacked morphological distinctiveness, making a comparison among treatments

impossible.  Another concern with regard to the use of culture-based procedures is the

difficulty in accurately and consistently identifying community members, given the fact

that very similar colony morphologies can occur among taxonomically distinct groups of

organisms.  However, recent studies have shown that colony morphology can in fact

provide an accurate basis on which to define “recoverable diversity” (Haldeman and

Amy, 1993; Lebaron et al., 1998).    

3.4.2.2.  Genetic measures

 The DNA fingerprinting approaches used in this study showed a significant

difference in overall microbial community structure along the dilution gradient; in

particular, analysis of both the AFLP and T-RFLP data showed that the very dilute (10-5

and 10-6) communities were distinctly different from the communities regrown from less

dilute inocula (Figures 3.5 and 3.6).  AFLP also separated the undiluted community from

the remaining treatments.  The fact that AFLP distinguished a difference in microbial

community structure between the undiluted and the 10-1 dilution community provides

further evidence that the original microbial community (before dilution) had high

dominance.  

With T-RFLP, PCR is used to amplify the 16S rRNA genes directly from each

community DNA sample using a pair of primers, and analysis of a community sample

produces a fingerprint wherein each individual band is, theoretically, derived from a

different organism type (a different ribotype).  However, it is well known that T-RFLP
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underestimates the species richness of a community because populations that are not

numerically dominant are not represented if their template DNA comprises too small of a

fraction of the total community DNA (Dunbar et al., 2000; Liu et al., 1997).  Moreover,

due to the conservation of restriction site positions in 16S rDNA, the resolution of T-

RFLP analysis is not at the “species” level but instead reflects the distribution of higher

order groups.  Another limitation to the resolving power of T-RFLP is in the actual

“universalness” of primer pairs, as none of the available universal primers can hybridize

to all of the known eukaryotic, bacterial, or archaeal 16S rRNA genes (Brunk et al., 1996;

Zheng et al., 1996).  Despite these limitations, researchers commonly use T-RFLP for

comparing microbial community structure and frequently interpret the “number of T-

RFLP peaks” to be reflective of [minimum] community richness (Liu et al., 1997 and

1998).

In this study, the total number of T-RFLP peaks was expected to decrease along

the dilution/diversity gradient, corresponding to a loss in species richness; this number

instead remained essentially constant (Table 3.3).  However, the identity of the T-RFLP

peaks changed, and this shift is illustrated by comparing the number of unique fragments

found in each dilution/diversity group (Table 3.3).  The fact that several unique peaks

were observed in the “low diversity” treatments (10-5 and 10-6) was surprising.

Probability suggests that the dominant organisms in the original community are the ones

that should persist through the dilution procedure, and would therefore be used to

inoculate these flasks.  Consequently, nearly all of the organisms observed in the very

dilute treatments should also have been detected in the less dilute treatments.  The fact

that this was not found to be the case with T-RFLP suggests either  (1) a lack of
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discrimative power of T-RFLP, due to the bias of the procedure toward specific and/or

dominant community members (a bias that seems to change depending on the evenness

of the community being analyzed) or (2) a failure of these organisms to survive in the less

dilute treatments, despite their dominance in the original community and their ability to

thrive in culture in the more dilute treatments.

Since the original sewage community contained 1.8 × 106 cells ml-1 (AODC), the

most dilute community maintained in this experiment (10-6) should have been inoculated

with approximately 2 cells.  After regrowth, diversity in this community was expected to

be very low.  On the R2A plates, percent culturability was high (100%) and only three

colony morphologies were observed, further suggesting that diversity in these flasks was

quite low.  Given this information, it was surprising to find that the average number of T-

RFLP fragments in the 10-6 treatment was so high (8 for MspI and 10 for HhaI).  It is

possible that this discrepancy could have been the result of a technical error with the T-

RFLP, e.g., an incomplete restriction digest, which could produce a number of differently

sized T-RFLP fragments for each organism type.  However, experimental controls, where

the T-RFLP analysis was applied to DNA from a pure culture, were also performed and a

single T-RLFP peak was generated in each case.  Another possible explanation is that,

because an individual organism can contain multiple, heterogeneous copies of the 16S

rRNA gene (Linton et al., 1994; Ninet et al., 1996; Pettersson et al., 1994; Wang and

Wang, 1997; Wang et al., 1997), each organism type could actually have been

responsible for more than one T-RFLP peak.  However, the extent to which such 

sequence deviations occur is not well studied, and it is unlikely that the detection of

multiple, divergent copies of a 16S rRNA gene can account for the results presented here.
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Recent work has discovered that related strains of bacteria can have the same 16S

rRNA gene, but may not have the same physiological profiles or the same ecological

strategies in the environment (Jaspers et al. 2001).  Presumably, this additional variability

is coded elsewhere on the bacterial chromosome.  Consequently, analysis of a single gene

may not provide as much resolution when distinguishing among communities, compared

to procedures that can survey the entire genome (e.g., AFLP).  With AFLP, a restriction

digest is performed on a DNA sample (similar to RFLP) and then a set of primer-

recognition sequences (adaptors) is used to amplify the restriction fragments using PCR

(Zabeau and Vos, 1993); the primers and restriction enzymes used are not specific for a

given gene or group or genes but can, theoretically, interact in numerous random places

throughout a genome.  AFLP is very similar in premise and application to RAPD

fingerprinting, which has been used a number of times to compare microbial community

structure (Franklin et al., 1999a; Franklin et al., 1999b; Wikström et al., 1999; Wikström

et al., 2000; Xia et al., 1995; Yang et al., 2000).  

AFLP is fundamentally different from each of the other procedures applied in this

work, and from most other techniques used to compare microbial community structure, in

that it is sensitive to overall differences between communities - including taxonomic

distances between organisms.  Watve and Gangal (1996) point out that most procedures

would not detect a difference in diversity between one community composed of four

biotypes of coliforms and another composed of one coliform, one archaebacterium, one

myxobacterium, and one actinomycete - though many microbial ecologists would agree

that the latter should be treated as more diverse.  The ability to differentiate between such

mixtures is important and it has been suggested that one way to incorporate this
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additional information is to simply calculate the mean taxonomic distance between all

pairs of isolates in a community as a diversity index (Rao, 1980); however the problem of

isolation and taxonomic characterization of individuals remains.  In this study, AFLP was

used to compare overall diversity, considering richness, evenness, and taxonomic

relatedness of community members without attempting to evaluate each of these elements

separately.  

3.4.2.3.  Community-level physiological profiling

CLPP compares patterns of carbon substrate utilization among communities by

evaluating the extent to which a community metabolizes each of 95 different sole carbon

sources (Garland and Mills, 1991).  When CLPP was applied in this study, the different

dilution communities separated into two distinct groups (10-5 and 10-6 were unique

(Figure 3.3)).  These results are important as they demonstrate that there were phenotypic

differences among the regrown communities, as well as the genetic differences already

described.  This means that the dilution process not only changed the identity of the

organisms in the communities, as revealed by the genetic analyses, but also changed the

communities’ overall metabolic capabilities – the most diverse (undiluted) community

did not have the same functional potential as the low diversity (10-6) community.  The

fact that the genetic and the phenotypic measures gave similar results in this study is also

meaningful as the correlation between the two suggests that genetic differences among

communities actually have the potential to manifest as differences in function.  



95

Dilution/extinction analysis of CLPP was used to compare relative structural

diversity of the different regrown communities.  This procedure uses dilution to

extinction of a heterotrophic microbial community to evaluate the rate of character loss

from the mixture; assuming the rate of character loss is somehow proportional to the

diversity of the original community, the relative diversity of the sample can be estimated

(Garland and Lehman, 1999).  In this study, dilution/extinction analysis showed no

significant change in the maximum functional richness (Rmax) of each community along

the diversity gradient.  The other regression parameter, KI, the half-maximum richness,

describes the rate at which functional characters can be diluted out of a mixed community

and has been used to assess relative structural diversity in a number of different

experimental systems; higher KI correlates with a higher diversity and also with increased

niche specialization (Garland and Lehman, 1999).  In this study, KI decreased along the

dilution/diversity gradient confirming that the communities regrown from the less dilute

inocula were more diverse.  The community regrown from the undiluted inoculum was

able to perform a wide variety of functions but lost this ability rapidly upon dilution; this

suggests a community composed primarily of specialists.  The low diversity community,

regrown from the 10-6 dilution inocula, had a much lower KI; this increased conservation

of function among the individuals in the group may suggest a community of generalists.

The results of the percent culturability calculations also showed the high dilution/low

diversity communities to be more generalized in their metabolic capabilities.  
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Often times, when researchers are advocating the use of molecular techniques

over culture-based procedures, the reason presented is that culture-based analyses are too 

biased toward certain groups of organisms.  As such, they underestimate the total

richness of a community in an inconsistent and unpredictable manner.  In this research,

23 colony types were observed on R2A agar (across all treatments), and only 42 unique

T-RFLPs were encountered.  Certainly, the actual total number of organism types in the

original sample was much greater.  Considering that each of the analytical methods

employed in this study showed a clear change in overall community structure between

the 10-4 and 10-5 dilution treatments (Table 3.4), the numerical simulations would then

suggest that there were between 1000 and 10,000 types of organisms in the original

sewage community.  This value is consistent with results of Torsvik et al. who found that

a gram of soil can contained between 4,000 (Torsvik et al., 1990) and 10,000 different

bacterial types (Torsvik et al., 1993).  In the present study, a more precise estimate of the

number of types in the originial community might have been obtained if a different

dilution scheme had been used (e.g., intervals smaller than 10-fold).

In this study, significant differences in community structure were detected using

genetic (AFLP and T-RFLP), physiological (CLPP), and culture-based (colony

morphology on R2A agar) measures.  Along with this difference in community structure,

differences in community size (AODC), composition (ratio of sewage medium counts to

R2A counts, monitoring of each colony morphology across the treatments), and

metabolic redundancy (generalist versus specialist) were observed, suggesting that

differences in structure/diversity of communities maintained in the same environment can



97

manifest as differences in community organization and function.  Though differences in

microbial community structure were detected with every measure employed, each

procedure had different methodological limitations that should be recognized when that

technique is applied.  The results of the experimental incubation demonstrated that the 

dilution/regrowth approach may be a useful way of generating communities differing in

diversity (richness and evenness) and varying in overall community structure.  Moreover,

the procedure may be a useful was of analyzing communities – in this study, a great deal

of information was gained about the richness and distribution of the original sewage

community from analysis of the regrown communities. 
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Table 3.4.  Summary of the groupings obtained using each technique.  Different letters
determined as described in the text.  “Dilution” refers to the original dilution used as the ino

Dilution AODC
R2A

counts
R2A: %

culturability
Diversity on
R2A plates†

SM
counts

Ratio of SM to
R2A counts†

100 a a a a a a

10-1 a a a b a a

10-2 a a a b a a

10-3 a a ab b ab a

10-4 ab a ab b ab a

10-5 b ab b b ab b

10-6 c b c b b b

† For these data, statistical analyses were not performed to assess significance levels; inste
determined by visual interpretation of Figure 3.2 (“Diversity on R2A plates”) and Figure 3
SM to R2A counts, different groups were defined as having a ratio greater than 1 (a) or les
 represent significantly different communities,
culum for the regrown communities.  

CLPP
Diln./ Extn.
of CLPP† AFLP T-RFLP

a a a a

a - b a

a b b a

ab - b a

ab b b ab

b - c b

c c c b

ad the different groupings outlined above were
.4 (“Diln./Extn. of CLPP”).   For the ratio of
s than 1 (b).

98
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Chapter 4.

Structural and functional responses of a sewage microbial 
community to dilution-induced reductions in diversity.
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Abstract

The purpose of the research presented here was to examine the relationship between

functional redundancy and microbial community structure/diversity using culture

experiments to ensure constant environmental conditions.  Serial dilutions of a sewage

microbial community were prepared, used to inoculate sterile sewage, and maintained in

batch culture.  Probability suggests that dilution of the initial community should remove

rare organism types, creating mixtures of cells differing in diversity.  Regrowth of the

diluted mixtures generated communities similar in abundance but differing in community

structure (determined using two DNA fingerprinting techniques) and relative diversity

(evaluated using community-level physiological profiles (CLPP)).  The in situ function of

each regrown community was examined by monitoring the short-term uptake of five

different 14C labeled compounds (glucose, acetate, citrate, palmitic acid, and an amino

acid mixture).  No significant differences were detected between treatments in either the

rate of uptake of a substrate or the efficiency with which each community assimilated

each compound.  However, changes in community-level glucose and acetate metabolism

were observed, and correlated with specific changes in community structure.  This

suggests that a significant loss of function might have been observed if additional

treatments, with lower levels of diversity, had been maintained.  Nonetheless, the fact

that the activity of the original community was the same as that of a community regrown

from a 10-6 dilution indicates that functional redundancy was quite high in this system

and may contribute to ecosystem stability.  For each organism type eliminated during the

dilution process, at least one of the remaining organism types was able to provide the

same function at the same level as the lost type.  
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4.1.  Introduction

Over the past 50 years, there has been intense research and debate in the field of

ecology about the significance of biodiversity in ecosystem function.  Many ecological

theories, developed from the study of plant and animal communities, propose that there is

a relationship between diversity and important ecosystem processes such as resource

partitioning, succession, productivity, community function, and ecosystem stability

(Elton, 1958; Hutchinson, 1959; MacArthur, 1957; Odum, 1983; Pielou, 1975).

Although there is research to support these relationships in some systems (Naeem and Li,

1997; Naeem et al., 1994; Tilman, 1996; Tilman and Downing, 1994; Tilman et al.,

1996), there is considerable debate over what aspects of a community, and what

particular features of an ecosystem, should be compared (Chapin et al., 1997; Grime,

1997; Hooper and Vitousek, 1997; Tilman et al., 1997; Wardle and Giller, 1996).  These

theories have been tentatively applied to the study of bacterial communities, but

methodological limitations have made rigorous hypothesis testing especially difficult.

Because of the limitations of culture methods, and the extreme diversity and abundance

of microbial communities, it is not reasonable to use ecological approaches that rely on

determining the distribution of different types of organisms as a means of testing

hypotheses about microbial community dynamics.  The use of molecular techniques and

community-level analyses has greatly increased our ability to monitor the distribution of

bacteria in the environment; however, it is still not possible to completely categorize the

constituents of a community, or to thoroughly understand the functional abilities of each

individual organism type.   
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In addition to the taxonomic and methodological difficulties associated with

monitoring the hyperdiversity of microbial communities, there are several conceptual

issues, unique to the field of microbial ecology, that suggest that the use of diversity as a

indicator of ecosystem performance may not be appropriate in these systems.  For

example, Tate (1997) questioned whether it is even useful to distinguish between

“higher” and “lower” diversity in natural microbial communities, considering their

tremendous richness (even for “low” diversity communities) and the fact that they may

contain numerous dormant populations.  The physiological versatility of many

microorganisms presents another difficulty in determining the nature of any relationship

between microbial community structure and function.  A number of studies have shown

that the broad-scale functional ability of a microbial community is often not controlled by

organism diversity (Atlas et al., 1991; Degens, 1998; Fernandez et al., 1999; Klein et al.,

1986), and it has been suggested that redundancy of function may be much more

important for understanding the stability of microbial communities, and of the ecosystem

functions they perform, than traditional diversity measures (Beare et al., 1995; Briones

and Raskin, ; Finlay et al., 1997; Kennedy and Smith, 1995; White, 1995; Zak et al.,

1994).  

The following calculation illustrates the potential for functional redundancy in

microbial communities.  First, consider the distribution of genetic determinants for E.

coli.  Current estimates indicate that approximately 1/3rd of E. coli genes code for

products that are used in cellular maintenance activities (e.g., cellular structure, transport

functions, RNAs, and protein synthesis), and approximately 2,500 genes are available for
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metabolic processes (1,300 already identified and 1,200 hypothesized) (Riley, 1999).

Using this value to represent the average number of unique metabolic enzymes that a

bacterium is capable of producing, it is possible to calculate the total number of genes

(enzymes) available for ecosystem function in a microbial community.  Using Torsvik’s

estimate of 10,000 different bacterial types per 30 g soil sample (Torsvik et al., 1998;

Torsvik et al., 1996), there may be up to 2.5 × 107 enzymes (2,500 genes × 10,000 types)

available for metabolic processing and ecosystem function in this small mass of soil.  The

number of enzymes required to perform any given function may vary greatly, but even if

50 different types of enzymes are required for each unique function, a community could

still contain enough genetic material to code for 5 × 105 different processes (2.5 × 107

enzymes per community / 50 enzymes per function).  Clearly, complex microbial

communities have the potential for tremendous metabolic redundancy and may contain

multiple types of organisms (species) capable of performing each function in the

environment.  

The hypothesized relationship between functional redundancy and stability within

ecosystems is conceptually similar to a cybernetic control mechanism called "congeneric

homotaxis" (Hill and Wiegert, 1980).  In this case, stability is conferred on a system

because multiple genera are capable of carrying out a given function in the ecosystem,

presumably across a wide range of environmental conditions. If one type of organism is

eliminated from the system, or ceases to function for any reason, another set of

“ecologically equivalent” (Gitay et al., 1996) organisms already present in the system

will instead provide the function.  This allows maintenance of the system’s functional
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ability at or near the level prior to the loss of the first set of organisms, and acts as

insurance again the loss of function from a community.  

Although it is a potentially important ecosystem performance parameter, the

functional redundancy of microbial communities has not been well studied (Briones and

Raskin, 2003).  Most recent work has focused on manipulating microbial diversity in the

lab, while monitoring the associated change in function (Griffiths et al., 2000; Griffiths et

al., 2001; McGrady-Steed et al., 1997; Mikola and Setala, 1998; Naeem and Li, 1997;

Salonius, 1981).  Another set of studies has focused on field comparisons, where

differences in microbial diversity were predicted/inferred based on a historical

knowledge of the communities’ development (e.g., along a soil reclamation gradient (Yin

et al., 2000), in association with different agricultural land-uses (Degens et al., 2001), or

in response to a metal contamination (Rasmussen and Sorensen, 2001; Wenderoth and

Reber, 1999)).  Some of these studies have defined functional redundancy as simply the

presence of multiple species that are capable of performing each function (i.e.,

redundancy of functional potential), and have attempted to quantify the extent of this

redundancy (e.g., how many species may be found within each functional group or guild

(Yin et al., 2000)).  However, studies that consider how in situ function is affected by

changes in community diversity are also needed, as there are several reasons why overall

ecosystem functioning may not be maintained even in a community that is redundant

with respect to each individual function.  For example, though multiple populations may

be capable of performing a function, they may not all perform it with the same efficiency,

or they may not generate the same metabolic by-products.  Similarly, a “replacement”



105

species may not have the same growth rate or competitive ability as the original

community member.  Changes such as this could influence the activity of other

populations in the community, and indirectly cause a change in overall ecosystem

function - despite the fact that the original function of interest has been maintained

(Chapin et al., 1997).  More research is needed to determine whether the presence of

multiple taxa/species, with overlapping functional abilities, actually results in functional

stability.

The purpose of the research presented here was to examine the relationship

between functional redundancy and microbial community structure/diversity using

culture experiments to ensure constant environmental conditions.  Serial dilutions of a

sewage microbial community were prepared, used to inoculate sterile sewage, and

maintained in batch culture.  Probability suggests that dilution of a relatively diverse

community will remove rare organism types, creating mixtures of cells differing in

species richness (Franklin et al., 2001).  Regrowth of the diluted mixtures can then be

used to produce mixed cultures with roughly the same biomass, but differing in overall

diversity.  Previous work in our laboratory has demonstrated that this approach is an

effective means of generating communities differing in structure as determined using

genetic, physiological, and culture-based techniques (Franklin et al., 2001; Garland et al.,

1999).  In the present study, several different methods were used to characterize the

microbial communities, and the results indicate that the dilution/regrowth procedure did

produce microbial communities that differed in overall structure and diversity.  The in

situ function (short-term uptake of five different 14C labeled compounds) of each
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community was measured, and there were no significant differences between treatments

in either the rate of uptake of a substrate or the assimilation efficiency for any of the

compounds studied.  The fact that function was maintained suggests that functional

redundancy was quite high within the microbial consortium, and conferred some stability

on the community – at least for the functions we examined.  

4.2.  Materials and methods

4.2.1.  Microcosm setup

A single large sample (approximately 20 L) of sewage was collected from the

aeration basin of the Rivanna Wastewater Treatment Plant in Charlottesville, Virginia.

After heat sterilization (autoclaving for 2 h at 120°C and 15 psi), the sample was allowed

to settle for 72 h at 4°C.  The clarified supernatant liquid was then used as the growth

medium for the flask experiments.  Cultures were prepared by adding 60 ml of

autoclaved sewage supernatant to a 125-ml Erlenmeyer flask, capped with a sterile foam

plug.  

At the start of the experiment, a fresh sample of sewage was collected from the

same aeration basin.  From this sample, decimal dilutions were prepared, using sterile

sewage as the diluent, and each of these dilutions was used as an inoculum in the flask

experiments.  Seven treatments were established by adding 1 ml of sewage (“100

treatment”) or diluted sewage (10-1 through 10-6) to each flask; three flasks were

inoculated for each treatment.  After inoculation, flasks were placed on a shaker table. 
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(150 rpm) and incubated at 23°C.  Each day, 20 ml of fluid was removed from each

microcosm and replaced with 20 ml of sterile sewage.  The cultures were maintained in

this fashion for 9 days (i.e., 3 retention times).

At the end of the experiment, several attributes of the regrown communities were

measured including: community size (total and cultural counts), relative structural

diversity (using dilution-extinction analysis of community-level physiological profiling

(CLPP) (Garland and Lehman, 1999)), overall similarity in community structure (using

Amplified Fragment Length Polymorphism (AFLP) DNA fingerprinting (Franklin et al.,

2001; Zabeau and Vos, 1993)), community similarity based on the distribution of 16S

rRNA genes (using Terminal Restriction Fragment Length Polymorphism (T-RFLP)

DNA fingerprinting (Liu et al., 1997)), and short-term uptake of several 14C labeled

substrates.  Because of the amount of laboratory effort required, final analysis of the

communities took place over a two-day time period.  On the first day (day 8), Acridine

Orange direct counts (AODC (Hobbie et al., 1977)) were performed, the heterotrophic

uptake of three different 14C labeled substrates (glucose, an amino acid mixture, and

citric acid) was measured, and a sample was preserved for molecular genetic analyses.

On the second day (day 9), samples were again collected for AODC and genetic analyses,

as well as for cultural counts on R2A agar (spread plates incubated for 48 h at 23°C).  In

addition, the heterotrophic uptake of two other 14C labeled substrates (acetate and

palmitic acid) was measured, and dilution-extinction analysis of CLPP was performed.
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4.2.2.  Determination of relative structural diversity

Dilution-extinction analysis of CLPP was performed on a subset of the

regrown communities (two flasks from each treatment) to determine the relationship

between cell density (I) and functional richness (number of positive wells (R)) for

each treatment (Garland and Lehman, 1999).  This information was then used to make

inferences about the relative structural diversity of each set of communities.  At the

end of the experiment, serial dilutions of the regrown microbial communities were

prepared (10-1 through 10-8), and inoculated into Biolog GN2 microplates (Biolog,

Inc., Hayward, CA).  Plates were incubated at 23°C for 6 days, at which time the

absorbance (590 nm) in each well of each plate was measured using a Labsystems

Multiskan RC plate reader.  A positive response was defined as any value greater than

0.25 absorbance units, after correction for the control well.  

Data for each treatment were pooled and plots were made of the number of

positive responses (R) in each plate versus the concentration of cells in each well (I) as

determined using R2A counts.  A hyperbolic model, R = (Rmax × I) / (KI + I), was then

fit to the data; non-linear regressions were performed using SigmaPlot (Version 5.0),

and the parameters Rmax, which equals the maximum (asymptotic level) of R, and KI,

which is the value of I when R is 1/2 of Rmax, were determined.
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4.2.3.   Molecular genetic analyses

4.2.3.1.  DNA extraction and quantification

 Samples (20 ml) were collected from each of the three replicate flasks for each

treatment at the end of the experiment (day 9), and from one flask of each treatment on

day 8.  The suspended microbial community was concentrated from this solution by

centrifugation (23,000 × g for 20 min), and the resultant cell pellet was resuspended in

200 µl of phosphate-buffered saline (PBS, pH 7.4) and stored at -20°C.  Whole-

community DNA was later extracted using the High Pure PCR Template Preparation Kit

(Boehringer Mannheim, Indianapolis, IN) following the manufacturer’s instructions for

bacterial cultures.  DNA concentration was determined using the PicoGreen dsDNA

quantification reagent (Molecular Probes, Eugene, OR). 

4.2.3.2.  Comparison of overall community structure using AFLP

AFLP analysis was completed using the primers and protocols described in

Franklin et al. (2001) and the Perkin Elmer Microbial Fingerprinting Kit (PE Applied

Biosystems, Foster City, CA).  The AFLP amplification products were resolved using an

ABI Prism 310 Genetic Analyzer following the manufacturer’s instructions.  Data were

analyzed using the Genotyper software (PE Applied Biosystems), and the presence or

absence of each fragment/peak in each sample was coded as 1 or 0.  This type of data

matrix was prepared for each primer pair, and the information from the three matrices

was pooled into a single large data set.  This resulted in a total of 114 bands, all of which

were polymorphic.  
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The Jaccard coefficient was used to calculate the relative similarity between each

sample pair (Sneath and Sokal, 1973), and a Mantel test (Mantel, 1967; Sokal, 1979) was

used to evaluate whether overall microbial community structure was significantly

different among the treatments.  In general, a Mantel test determines the amount of

correlation between two matrices, and a permutation procedure is used to assess the

significance of this correlation.  In this application, the two matrices being compared

were (1) the observed similarity matrix calculated from the AFLP data, and (2) a

conceptual model matrix that defined group identity (dilution treatment).  Data were

analyzed using the Mantel-Struct program (Miller, 1999) to test the null hypothesis that

there was no difference in within- and between-group genetic similarities of the

communities.  A Monte Carlo procedure (using 5000 permutations) was employed to

assess the significance of the test statistic, and a Bonferonni type correction was made to

adjust the α level, depending on the number of comparisons.  

A principal components analysis (PCA) was performed on the original pooled

data matrix  (SPSS 10.0), and plots of the first two principal components were made.

PCA of binary data positions objects in multidimensional space at distances that are the

square roots of complements of simple matching coefficients (Gower, 1966; Legendre

and Legendre, 1998).  The application of PCA in this study was solely to aid in

visualization of the relationships among the samples and not in statistical evaluation;

statistical significance was established via the Mantel tests.  
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4.2.3.3.  Comparing community composition using T-RFLP

T-RFLP was performed as described in Liu et al. (1997), with slight modification.

The eubacterial primers 27 Forward (5' AGA GTT TGA TCC TGG CTC AG 3'

(fluorescently labeled with 6-FAM  (5[6]-carboxy-fluorescein))) and 1492 Reverse (5'

GGT TAC CTT GTT ACG ACT T3') (Operon Technologies Alameda, CA) were

used.  The PCR reaction mixture included: 1X PCR buffer, 200 mM of each dNTP, 2.0

mM MgCl2, 1.0 µM of each primer, 0.4 µg µl-1 bovine serum albumin (BSA), and 1.25

units of Ampli Taq DNA polymerase (PE Applied Biosystems, Foster City, CA) per

50-µl reaction.  The thermal cycling conditions included an initial denaturation at

94°C for 5 min, followed by 35 cycles of: 94°C for 0.5 min, 58°C for 1 min, 72°C for

2 min, with a final elongation at 72°C for 10 min.  PCR products were purified using

the Wizard PCR Preps DNA purification system (Promega, Madison, WI) and eluated

in a final volume of 50 µl.  Separate portions (10 µl) of the purified PCR product were

then digested with either the HhaI and RsaI restriction enzymes (New England

Biolabs, Beverly, MA).

Data were collected using an ABI Prism 310 Genetic Analyzer.  The presence

or absence of each terminal restriction fragment (T-RF) in each sample was

determined and recorded as a matrix of 1’s and 0’s.  The data from the two restriction

digests were pooled into a single large dataset, and analyzed using a Mantel test and a

PCA as described for AFLP.
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4.2.4.  Short-term heterotrophic uptake assay

The following substrates, labeled with 14C, were used:  (a) D-[14C(U)] glucose

(specific activity: 340 mCi mmol-1), (b) [1, 5-14C] citric acid (specific activity: 83.8 mCi

mmol-1), (c) [2-14C] acetate (sodium salt, specific activity: 51.2 mCi mmol-1), (d) [1-14C]

palmitic acid (specific activity: 52 mCi mmol-1), and (e) L-amino acid mixture (specific

activity: 2.23 µCi µg C-1, which is equivalent to 334 µCi µmol-1 assuming an average

molecular weight of amino acids as 150 g mol-1).  Glucose and palmitic acid were

obtained from American Radiolabeled Chemicals, Inc (St. Louis, MO), and all other

substrates were obtained from NEN Life Sciences Products (Boston, MA).  An additional

set of experiments was performed using a sixth substrate, radiolabeled benzene, but the

results are not reported here as it was later determined that the benzene stock solution had

been contaminated.

Two of the replicate flasks from each treatment were randomly selected for

analysis of heterotrophic activity (King, 2002; Wright and Burnison, 1979).  From each

flask, 5 ml of the culture were removed and mixed with 5 ml of sterile sewage and 0.1

µCi of radiolabeled substrate in a 25-ml Erlenmeyer flask.  At the end of a 2-hr

incubation period, the amount of 14C labeled CO2 produced in each flask was determined,

and represented the portion of substrate taken up by the community and respired

(mineralization).  The amount of substrate taken up and accumulated into biomass

(assimilation) was estimated by filtering the sewage through a 0.4 µm filter, to trap the

microbial cells, and then quantifying the amount of radiolabel associated with the filter.

Radioactivity was measured using a Beckman LS 6500 liquid scintillation counter.  Total
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uptake was calculated as the sum of mineralization and assimilation, and standardized to

a per cell value using the AODC; assimilation efficiency was calculated as the portion of

the total label uptake incorporated into biomass.  For each substrate, each of these

parameters was compared across treatments using an ANOVA.

4.3.  Results

4.3.1.  Community size

An ANOVA of the AODC data (Figure 4.1A) showed no significant differences

in the total concentration of cells across the various dilution/diversity treatments for

either day 8 (d.f. = 13, F = 0.798, p = 0.606) or day 9 (d.f. = 20, F = 1.397, p = 0.283) of

the experiment, and there were no significant differences between days (d.f. = 27, F =

0.498, p = 0.492).  The average concentration of cells based upon these two sets of

measurements was 3.5 × 108 cells ml-1 (± 3.3 × 107 (SEM)), and the concentration of cells

in the original undiluted inoculum (at the start of the experiment) was 2.2 × 108 cells ml-1.

A second ANOVA demonstrated that the number of colonies able to grow on

R2A agar (Figure 4.1B) was significantly different across treatments (d.f. = 18, F = 4.39,

p = 0.014).  Post-hoc pairwise comparisons (Tukey HSD) indicated that the community

regrown from the 10-5 dilution inocula was significantly different from all of the others.

The average concentration for the 10-5 treatment was 1.9 × 108 CFU ml-1 (colony forming

units), and the average for all of the other treatments combined was only 2.4 × 107 CFU

ml-1 (± 8.1 × 106 (SEM)).  The concentration of cells in the original inoculum that were

capable of growing on R2A agar was 2.3 × 106 CFU ml-1.
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Figure 4.1.  Bacterial abundance (mean ± 1 SD) as determined by AODC (A) and
cultural counts on R2A agar (B).  The X-axis in each of these graphs represents the
negative exponent of the dilution factor used to create the original inoculum (e.g., “4”
corresponds to a 10-4 dilution treatment).  
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4.3.2.  Relative structural diversity

Dilution-extinction analysis of functional characters in the CLPP assays was

used to make inferences about the relative structural diversity of each of the regrown

microbial communities.  Two flasks from each treatment were analyzed, the data

pooled, and plots were made of the functional richness (R) versus inoculum

concentration (I), as described in the Methods section.  The data were fit with a

rectangular hyperbola to estimate the parameters Rmax and KI for each treatment

(Figure 4.2); the multiple correlation coefficients (R2) for these fits were quite high

(100, 10-2, and 10-3 treatments: 0.94, 10-4: 0.90, 10-5: 0.98, and 10-6: 0.80), and all p

values < 0.0001.  Because of an error made when inoculating the plates from the 10-1

treatment, no values are available for that set of communities. 

Rmax, referred to as maximum functional richness by Garland and Lehman

(1999), is the estimated maximum number of tests that would be positive for a

community.  This value ranged from 82 to 92, and did not change significantly along

the dilution/diversity gradient (Figure 4.2 A).  However, KI (Figure 4.2 B), the cell

density at which R (functional richness) = 1/2 (Rmax), decreased in the communities

that were predicted to have lower diversity based upon extent of dilution. 
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Figure 4.2.  Mean parameter estimates (± 1 SD) obtained from the dilution-extinction
analysis of CLPP: maximum function richness, Rmax (A) and rate of character loss, KI
(B).  The X-axis in each of these graphs represents the negative exponent of the dilution
factor used to create the original inoculum (e.g. “4” corresponds to a 10-4 dilution
treatment).  
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4.3.3.  Overall community genetic structure (AFLP)

Principal components analysis of the AFLP data (Figure 4.3 A) separated the

communities into four main groups based upon overall genetic composition:  undiluted

(100), 10-1, 10-2 through 10-5, and 10-6.  The four data points shown for each treatment

represent a single sample from each of the three flasks on day 9, and a single sample

from one randomly selected flask on day 8.  The four data points always cluster as a

group, indicating that the communities were as similar over time (day 8 and day 9) as

they were among replicate flasks.  A Mantel test was performed on the AFLP data to test

whether the communities from the different dilution/diversity treatments were

significantly different.  After applying a Bonferonni procedure to correct the significance

level for multiple comparisons (initial α = 0.05), three significantly different subsets

were established:  undiluted (100) with 10-1, 10-2 through 10-5, and 10-6.  

4.3.4.  T-RFLP analysis of dominant community members

In the T-RFLP analysis, 38 T-RF were observed across all treatments (pooled

results for two separate enzymes); only 7 of these T-RFs were common to all of the

communities, 5 were found only in the low-dilution treatments (100 - 10-4), and 16 were

found only in high-dilution treatments (10-5 and/or 10-6).  The number of T-RFs found for

each treatment did not change significantly or consistently across the dilution series,

except that the high-dilution treatments (10-5 and 10-6) generally contained the most T-

RF.  As with the AFLP data, there were no significant differences in the samples

collected on separate days. 
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Figure 4.3.  PCA of the AFLP (A) and T-RFLP (B) DNA fingerprinting data (includes
mean ± 1 SD).  Different symbols are used to distinguish significantly different groups,
and different sets of error bars are associated with each set of symbols.  Treatments are
identified by the negative exponent of the dilution factor used to create the original
inoculum (e.g. “4” corresponds to a 10-4 dilution treatment).  The percent of variance
explained by each PC is provided.  For AFLP, no data were collected from one of the
communities regrown from the undiluted inoculum and for two of samples from the 10-2

dilution.  
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The PCA of the pooled T-RFLP profiles (Figure 4.3 B) showed that the

communities from the high-dilution treatments (10-5 and 10-6) were distinct from all of

the others, and somewhat different from one another.  A Mantel test was performed as

described for AFLP, and the communities from the low-dilution treatments (undiluted

(100) through 10-4) were found to be distinct from both the 10-5 and the 10-6 dilution

treatments.  The two high-dilution treatments (10-5 and 10-6) were nearly significantly

different after correction for multiple comparisons (p = 0.03).  

4.3.5.  Short-term heterotrophic uptake assays

For each substrate, total uptake (Figure 4.4) and assimilation efficiency (Figure

4.5) were calculated for each treatment and expressed per AODC cell.  No statistically

significant differences were detected between any of the treatments for any of the

substrates (ANOVA).  For palmitic acid, assimilation could not be measured because the

substrate adhered to the cells and/or filters, so instead respiration (normalized per cell)

was compared across treatments using an ANOVA (Figure 4.6).  As with the other

substrates, no significant differences were observed.  Because the assimilation of palmitic

acid could not be measured, the efficiency was not calculated. 
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Figure 4.4.  Total uptake of each 14C-labeled substrate per AODC cell during the two-
hour incubation period (mean ± 1 SD) for the amino acid mixture (A), glucose (B), citrate
(C), and acetate (D).  The X-axis in each of these graphs represents the negative exponent
of the dilution factor used to create the original inoculum (e.g. “4” corresponds to a 10-4

dilution treatment).  ‘ND’ means ‘not determined.’
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Figure 4.5.  Assimilation efficiency of each 14C-labeled substrate during the two-hour
incubation period (mean ± 1 SD) for the amino acid mixture (A), glucose (B), citrate (C),
and acetate (D).  The X-axis in each of these graphs represents the negative exponent of
the dilution factor used to create the original inoculum (e.g. “4” corresponds to a 10-4

dilution treatment).  ‘ND’ means ‘not determined.’
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Figure 4.6.  Respiration of 14C-labeled palmitic acid per AODC cell during the two-hour
incubation period (mean ± 1 SD).  The X-axis on this graph represents the negative
exponent of the dilution factor used to create the original inoculum (e.g. “4” corresponds
to a 10-4 dilution treatment).  
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4.4.  Discussion

The dilution/regrowth approach described here has been used a number of times

as a means of manipulating diversity in microbial systems (Franklin et al., 2001; Garland

and Lehman, 1999; Garland et al., 1999; Griffiths et al., 2001; Morales et al., 1996;

Salonius, 1981).  These studies have shown that regrown communities may differ in

overall community structure, relative diversity, functional potential, and metabolic

redundancy, and that more diverse communities, those regrown from less dilute mixtures,

may be more stable (e.g., better able to withstand an invasion attempt (Garland et al.,

1999; Morales et al., 1996)).  The purpose of the present study was to use the

dilution/regrowth procedure to generate a set of communities, similar in composition but

systematically differing in diversity, and to monitor any associated changes in

community function.  In addition to monitoring the short-term in situ uptake of several

substrates, the communities were analyzed to confirm that the procedure actually

generated communities with different structure and diversity.

Microbial community structure was analyzed using three different techniques: (1)

AFLP fingerprinting, to compare overall genetic structure between each pair of

communities, (2) T-RFLP, to compare the dominant organism types in each treatment

based on variability in the 16S rRNA gene, and (3) dilution-extinction of CLPP, which

allowed ranking of the communities based upon relative diversity using a phenotypic

assay.  All three approaches confirmed that the microbial communities grown from more

dilute inocula (10-5 and 10-6) were less diverse, and had significantly different community

structure, compared to the communities grown from the undiluted inocula (100).  Despite
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the fact that microbial community structure and diversity changed along the dilution

gradient, there were no significant differences in either the uptake rate (how rapidly the

communities were able to process a given substrate) or the efficiency of the communities

(how they partition the substrate between biomass and loss to respiration) for glucose,

acetate, citrate, or the amino acids mixture (Figures 4.4 and 4.5).  Community respiration

of palmitic acid also did not vary significantly across treatments (Figure 4.6). 

All of the communities in this study were incubated in the same environment,

supplied with the same growth medium, and inoculated with a similar group of

organisms.  Therefore, it was not necessarily surprising to discover that they performed

several functions to the same extent, given how tightly coupled microbial activities are to

physical and chemical surroundings.  The fact that the activity of the communities

regrown from the very dilute inocula (10-6) could be the same as the communities

regrown from the undiluted (100) one suggests, as the calculations in the Introduction did,

that functional redundancy may be widespread.  In this study, the 100 treatment was

inoculated with approximately 108 cells, while the 10-6 treatment was inoculated with

only 100 cells (AODC); yet, for all of the substrates measured, activity of the regrown

communities was the same.  This means that the ~ 100 cells used to inoculate the 10-6

flasks must have contained a suite of genes sufficient to produce metabolic enzymes

similar to the more diverse community, with regards to the substrates tested.  

Another possible interpretation of these results is that the similarity in function

across treatments was not the result of functional redundancy, but simply reflected a

similarity in community composition; it is possible that the subset of organisms common
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to all treatments/dilutions happened to be responsible for the particular functions

examined.  However, we feel that this is not likely - given the variety of substrates used,

the wide range of treatments/dilutions studied, and the results of the various structural

assays (AFLP, T-RFLP, and CLPP).  Each of these structural assays showed a large

difference in community structure among treatments, particularly when comparing the

two ends of the dilution series (100 and 10-6).  For example, using AFLP, the average

relative similarity calculated among communities within these treatments was quite high

(100: 0.50, 10-6: 0.63) compared to the relative similarity between treatments (100 to 10-6:

0.13).  

The results of our study are similar to the findings of Salonius (1981), who used

dilution to reduce diversity of a soil microbial community.  After inoculating the

dilutions into sterile soil, he monitored net respiration (O2 uptake) for five months.  In

general, respiration was the same for each of the regrown communities, except when

richness was decreased below a critical level; in treatments with a very low diversity (just

above the extinction point), respiration was severely impaired.  Specifically, O2 uptake

was similar for communities regrown from undiluted, 1/5, and 1/10 dilutions of a forest

soil community, but was diminished in the 1/100 dilution; no microbial growth occurred

from the 1/1000 dilution treatment.  Griffiths et al. (1997) reported similar results for a

set of batch culture experiments.  In that case, changing the evenness of a community had

no impact on function, which was assessed by comparing the spectra of volatile organic

compounds produced by the microorganisms.  Several additional studies have been

performed that used chloroform fumigation for increasing periods of time as a way to
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progressively destroy species and manipulate microbial diversity in soil microbial

communities (Degens, 1998; Dickens and Anderson, 1999; Griffiths et al., 1997 and

2000; Zelles et al., 1997).  That work also demonstrated that there can be changes in

microbial community structure with no change in function (Degens, 1998), but that

function can be affected below certain levels of species richness (Griffiths et al., 1997;

Griffiths et al., 2000).  A similar phenomenon might have been observed in the present

study if even more dilute treatments had been maintained (e.g., 10-7 and 10-8, which

would have been inoculated with 10 cells and 1 cell respectively).

The two DNA fingerprinting techniques (T-RFLP and AFLP) used to characterize

microbial community structure in this study produced slightly different results, and

seemed to differ in their resolution and sensitivity to different aspects of community

structure (e.g., richness and evenness).  T-RFLP was used to analyze the microbial

communities based on variability in the 16S ribosomal RNA gene, and showed a major

difference in community structure between the very dilute (10-5 and 10-6) treatments

(Figure 4.3 B) and all of the others.  The T-RFLP profiles for the 10-5 and 10-6

communities contained several unique T-RFs, which were responsible for the separation

of these treatments from the others in the PCA.  The organisms corresponding to these T-

RFs were likely present in all of the treatments, but were too rare in the less dilute/more

diverse communities to be detected with the T-RFLP procedure; it is well known that

populations that are not numerically dominant are not represented in the T-RFLP profiles

if their template DNA is too small a fraction of the total community DNA pool (Dunbar

et al., 2000; Liu et al., 1997).  The detection of the unique T-RFs in the high-dilution
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treatments suggests that the evenness of the community increased in the communities

regrown from the more dilute inocula.  This is consistent with numerical simulations that

predict an increase in community evenness for inoculum created by high-dilutions

(Franklin et al., 2001).  

AFLP is a technique in which a restriction digest is performed on a DNA sample

(similar to RFLP), and then a set of primer-recognition sequences (adaptors) is used to

amplify the restriction fragments using PCR (Zabeau and Vos, 1993).  In contrast to T-

RFLP, the primers and restriction enzymes used are not specific for a given gene or

group of genes but can, theoretically, interact in numerous random places throughout a

genome.  This makes AFLP a particularly useful technique for analysis of overall

differences between communities, including strain- or species-level changes.  Because T-

RFLP is insensitive to changes in community composition that may occur at the level of

individual strains or species (Buckley and Schmidt, 2001), microbial communities whose

overall structure appears similar by T-RFLP analysis may still possess ecologically

significant differences in community composition.  

The AFLP results presented here show a strong difference in overall community

structure between the communities at either end of the dilution series (either low dilution:

100 with 10-1, or high dilution: 10-6).  Overall, the results from T-RFLP and AFLP were

similar, except that the separation of the low-dilution communities (100 with 10-1) was

not reflected in the T-RFLP profiles.  The separation of these low-dilution communities

in the AFLP analysis was likely related to the large decrease in richness of the inoculum

that occurred as the a result of the first few dilutions, and is consistent with previous



128

analysis of community structure in dilution/regrowth experiments (Franklin et al., 2001).

However, probability suggests that the identity of the dominant organisms should not

change much in these first few dilutions; since T-RFLP primarily detects dominant

organisms, it was not able to distinguish any differences in community structure for the

lower dilution/higher diversity treatments.  The different, but complementary, results

from the AFLP and T-RFLP analyses highlight the importance of using multiple

techniques to evaluate microbial communities in ecological studies.  This approach

allowed us to detect differences in community structure that matched well our

expectations based on hypothesized changes in both community richness and evenness. 

In order to determine whether there was a relationship between community

function and the observed changes in microbial community structure, a correlation

analysis was performed between each functional parameter (uptake and efficiency for

each substrate) and each PC from the genetic analyses.  For AFLP, the first four principal

components were examined (total variance explained: 51 %), and several significant

correlations (p < 0.05) were found (Table 4.1).  All of the significant correlations were

associated with either glucose or acetate metabolism, and the different PCs were not

linked with different levels of amino acid, citrate, or palmitic acid function.  Several

additional nearly significant correlations (0.05 < p < 0.10) were also found between

glucose and acetate and PC 2, PC 3, and PC 4 (Table 4.1).  However, no significant

correlations were observed between the functional parameters and any of the first four

PCs from the T-RFLP (total variance explained: 63 %; results not presented, p ≥ 0.10).  
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Table 4.1.  Pearson’s correlation coefficients between each functional parameter
and each PC derived from the AFLP analysis of community structure.  The
percent of variance explained by each PC is included.

AFLP community structure analysis
Functional parameters

PC 1
(17 %)

PC 2
(12 %)

PC 3
(12 %)

PC 4
(10 %)

Amino acid uptake 0.32 - 0.01 0.32 0.41
Amino acid efficiency 0.03   0.29 0.15 0.15
Citrate uptake 0.41   0.01 0.24 0.27
Citrate efficiency 0.14 - 0.26 0.33 0.40
Acetate uptake 0.26    - 0.63** 0.43 0.32
Acetate efficiency   0.47* - 0.22 0.15    0.58**

Glucose uptake   0.47*  - 0.46*   0.60** 0.11
Glucose efficiency  0.06  - 0.51*  0.54* 0.17
Palmitic acid respiration      - 0.14   0.03 0.13 0.22

*    Significant at α = 0.10
**  Significant at α = 0.05
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Overall, these results indicate that glucose and acetate metabolism may be more

sensitive to variations in community structure and diversity than the other substrates we

considered.  This is somewhat unexpected, given that glucose and acetate are generally

regarded as “universal” compounds (King, 2002), and are both central elements of

polysaccharide metabolism and transformations of organic matter.  Even though there

were no significant differences between treatments with regards to acetate or glucose

uptake (Figure 4.4 B and 4 D), there is a trend in the data that suggests these functions

may have been suppressed in the more dilute/less diverse treatments.  This trend is not

visible for any of the other function assays, and none of the other substrates showed a

significant correlation with community structure.  

The PCA condensed the complex DNA fingerprints into a small number of

principal components, and each of these derived variables describes a different aspect of

the microbial communities’ overall genetic composition.  Each PC correlates with a

distinct pattern of variability, which manifests as different groups of AFLP bands or T-

RFs, and these different sets of bands/fragments are likely related to the distribution and

relative abundance of different populations.  The results of this correlation analysis

suggest that changes in specific populations or groups of organisms in the microbial

communities may be associated with changes in community function for certain

substrates.  For example, a strong positive correlation was detected between AFLP PC 3

and glucose uptake (r = 0.60, p = 0.02); higher factor scores on PC 3 were associated

with higher community uptake rates for glucose.  Unfortunately, since it is not possible to 



131

relate the size of an AFLP fragment/band to any species or genus identification, these

results do not provide any direct insight into the identity of the specific organisms

responsible for the observed differences in community structure and function.  In

contrast, each T-RF in the T-RFLP theoretically corresponds to a particular type/species

of bacteria, and it may be possible to identify the particular community members

associated with each T-RFLP PC using clone libraries and DNA sequencing.  However,

given that the T-RFLP results presented here did not show any significant correlations

with community function, we did not make use of this approach.

The fact that there were no significant correlations between T-RFLP community

structure and community function, but strong correlations for AFLP, suggest that the

analysis of overall community structure using AFLP may be a better predictor of

potential/actual changes in community function, compared to an analysis of the 16S

rRNA gene (via T-RFLP).  Given that metabolic functions are seldom phylogenetically

grouped (Ward et al., 1995), this is not necessarily surprising.  Because AFLP

fingerprints reflect variability present throughout the entire community DNA pool,

differences in functionally relevant genes can also contribute to the AFLP profile, and

thus may explain the correlation observed between the AFLP community structure assay

and glucose and acetate metabolism.  Another major difference between AFLP and T-

RFLP is the fact that rarer organism types are typically not detected by T-RFLP

(discussed above), and an alternate explanation for the results presented here is that the

correlation between AFLP-based community structure measurements and activity is

partially due to the inclusion of these organisms in the structural assay.  This is
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particularly important considering the fact that so many of the methods currently used to

assay microbial communities focus solely on the characterization of the dominant

organism types.  Those organisms may represent a small portion of the total microbial

community; for example, in water only about 10 % of the simultaneously coexisting

species are dominant (Torsvik et al., 2002).  The development of techniques that better

consider the contribution of rare organism types to overall community structure and

function is an important area for further study.

One of the limitations of this study is that community function was only

determined for a small group of substrates.  However, the compounds were chosen to

represent a range of different types of chemical groups: amino acids, carboxylic acids

(short (acetate and citrate) and long chained (palmitic acid)), and carbohydrates

(glucose).  It is certainly possible that differences in function might have been found if

the communities had been presented with more exotic compounds.  In fact, we originally

selected the palmitic acid (CH3(CH2)14COOH) and benzene so that such a comparison

could be made.  Unfortunately, no data were obtained from benzene, as discussed in the

Methods section.  The results for palmitic acid show that mineralization was high,

relative to the mineralization rates of the other substrates, and it is important to point out

that this means the similarity in function across treatments for this substrate was not the

due to an inability of the community to metabolize the compound.  In a similar study, Yin

et al. (2000) analyzed the functional redundancy of a set of soil communities, using four

specific substrates (L-serine, L-threonin, sodium citrate, and α-lactose hydrate), and

found that functional redundancy did not necessarily correlate with total community /
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richness and diversity.  Moreover, they found no difference in redundancy across the

different substrates; the number and diversity of bacterial groups able to respond to each

substrate at each location was similar. 

There is considerable debate among ecologists as to what processes should to be

chosen to best characterize ecosystem or community functioning (Ghilarov, 1997; Gitay

et al., 1996), and the study reported here only addresses the metabolic uptake of a small

group of compounds.  Ideally, a more complete analysis of the function of microbial

communities would include measures of other compounds and processes, and would also

evaluate community stability (resistance and resilience).  There is some evidence that

suggests that well-defined microbial functions such as nitrification and methane

oxidation, which are carried out by a limited microbial sub-set, may be more sensitive to

changes in diversity than broader scale functions such as respiration or decomposition

(Griffiths et al., 2000; Toyota et al., 1999; Wu et al., 2002).  Kandeler et al. (1996) also

showed that carbon cycling may be less sensitive to changes in microbial community

composition than nitrogen and phosphorus dynamics.  

Though dilution is typically thought of as a linear process (which is appropriate

for some applications), the response of diversity to dilution in non-linear, and numerical

simulations have demonstrated that the impact of dilution can vary depending on the

diversity (richness and evenness) of the original community (Franklin et al., 2001).  For

example, if the original community has an even distribution, or contains very few rare

types, the dilution procedure will have little impact on the composition of the inocula.

Each successive dilution step will simply decrease the number of organisms, but will not
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change the relative abundance or identity of the community members.  At very high

dilutions, when the number of cells being transferred is less than the richness of the

original community, diversity will decrease significantly as organism types are excluded

from the mixture.  In situations where the original community is highly dominant,

inoculum richness will decrease greatly with the first few dilution steps (probability

suggests that few of the rare organisms would be transferred), and evenness will increase.

Smaller changes in diversity are expected at intermediate dilutions until, as discussed

above, the number of cells being transferred in the dilution is less than the number of

organism types.  

The actual experimental communities regrown from the diluted mixtures were not

expected to exactly mimic these simulations.  The dilution procedure may have disrupted

some of the biological interactions among organisms (e.g., synergistic or mutualistic

relationships, competition), which could lead to a change in community structure with

regrowth.  Likewise, the diversity of the regrown community may have been influenced

by variability in growth rates among organism types.  Nonetheless, some conclusions

about the diversity of the original sewage microbial community used in this study can be

made by examining the results of the dilution/regrowth procedure in the context of these

numerical simulations.  In particular, the fact that there was a large change in community

structure after the initial dilution indicates that the original community did contain a

number of rare organism types.  Moreover, community structure was expected to change

at high dilutions when the number of cells being transferred in the dilution is less than the

number of organism types; in this study, a shift in community structure and composition
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was generally observed between the 10-5 and 10-6 dilution treatments, which suggests that

there were between 100 and 1000 types of organisms in the original community.  This is

consistent with other estimates of microbial diversity in sewage samples, which range

from 70 types per ml (Curtis et al., 2002) to approximately 1000 types per ml (Franklin et

al., 2001), but much lower than has been found in pristine soil, which may contain tens of

thousands of different types (Curtis et al., 2002; Torsvik et al., 2002).  

Despite growing knowledge of the magnitude of prokaryotic diversity, most of

the organisms in natural environments are uncultivated, and their functional roles and

abilities remain unknown.  The fact that most questions about the structure and function

of microbial communities require relative comparisons, which can be made at the

community level, helps to overcome this problem, particularly if multiple analytical

techniques are employed to increase the robustness of the relative comparisons (Hughes

et al., 2001).  Most of the interest in studying the relationship between microbial diversity

and function is based in the assumption that diversity may influence ecosystem stability

and productivity, and could help mediate a community’s response to stress and

perturbation.  In the study presented here, we examined the relationship between

microbial diversity and function for a sewage microbial community and found that

functional redundancy may play an important role in the stability of microbial

communities, even for communities with a relatively low diversity such as sewage.  The

dilution/regrowth approach we employed was successful in creating communities that

differed in both overall structure and diversity, but no significant changes in the in situ

function of the communities were observed for any of the substrates we considered.  The
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data did suggest that the activity of the microbial community with regards to glucose and

acetate metabolism may have been associated with specific changes in community

structure, and a significant loss of function might have been observed if additional

treatments, with lower levels of diversity, had been maintained.  Further research into the

relationship between microbial community structure and function may help microbial

ecologists to determine what role, if any, microbial diversity may play in the environment

and to determine what impact functional redundancy may have on ecosystem function

and stability.
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Chapter 5.

The distribution of microbial communities in anaerobic and
 aerobic zones of a shallow coastal plain aquifer.

Franklin, R. B., D. R. Taylor, and A. L. Mills.  1999.  
Microbial Ecology.  38:377-386.
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Abstract

Randomly amplified polymorphic DNA (RAPD) fingerprinting was used to determine

the genetic similarity of whole-community DNA extracts from unattached

microorganisms in several groundwater wells.  The study site was a shallow coastal plain

aquifer on the Eastern Shore of Virginia that contains distinct regions of anaerobic and

aerobic groundwater.  Several wells in each region were sampled, and principal

component and cluster analyses showed a clear separation of the microbial communities

from the two chemical zones of the aquifer.   Within these zones, there was no

relationship between the genetic relatedness of a pair of communities and their spatial

separation.  Two additional sets of samples were taken at later times, and the same clear

separation between communities in the different zones of the aquifer was observed. The

specific relationships between wells within each zone changed over time, however, and

the magnitude and direction of these changes corresponded to concurrent changes in the

groundwater chemistry at each well.  Together, these results suggest that local variation

in groundwater chemistry can support genetically distinct microbial communities, and

that the composition of the microbial communities can follow seasonal fluctuations in

groundwater chemistry.
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5.1.  Introduction

The microbiology of aquifers and subsurface sediments is a subject of expanding

interest, in part because aquifers are a major source of freshwater in many countries.

These undergroundwaters represent 97% of all global freshwater and, though they are

commonly exploited for drinking water, agriculture, and industry, they are poorly

understood ecosystems (Gilbert et al., 1994).  Studies of shallow subsurface waters have

found substantial numbers of microorganisms, predominantly prokaryotic, and have

shown that these communities may perform a number of significant functions that may

dramatically affect the chemical composition of the groundwater (see review in Gounot

(1994)).  Much of this research has been stimulated by concern over contamination of

groundwater supplies, particularly organic contamination from industrial operations, and

the potential for microbial degradation of such pollutants as a means of restoring and

purifying these waters (Atlas, 1981; Atlas and Bartha, 1992; Madsen and Ghiorse, 1993;

Semprini et al., 1990).

Numerous studies have detailed the groundwater habitat, focusing on the

abundance (see references in Ghiorse and Wilson (1988) and Madsen and Ghiorse

(1993)), morphology (Balkwill, 1989; Bone and Balkwill, 1988), physiological state

(Beloin et al., 1988; Bengtsson, 1989; White et al., 1983), and genomic diversity

(Jiménez et al., 1990; Stim et al., 1990) of its microbial residents.  Research emphasis has

recently shifted away from isolate and culture-based approaches, toward community-

level analyses, where entire microbial communities are used as the functional units of

study.  Such investigations have considered rates of metabolism of specific substrates by
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entire communities (Beloin et al., 1988; Federle et al., 1990; Long et al., 1995),

performance of specific activities (e.g., denitrification (Smith and Duff, 1988)), and

expression of certain genes (Wilson et al., 1999).  Overall community structure in

groundwater has also been compared using community-level physiological profiling

(CLPP) (Colwell and Lehman, 1997; Lehman et al., 1995), phospholipid fatty acid

profiling (Kieft et al., 1997), and 16S ribosomal RNA gene sequencing (Pedersen et al.,

1996).

Microbial community structure in groundwater systems may be influenced by a

number of factors including site history, biological interactions (e.g.,

synergistic/mutualistic relationships (Chapelle, 1993), competition (Chapelle and Lovley,

1992), and predation (Sinclair and Ghiorse, 1987)), and physical habitat variation.  The

distribution of community members has also been correlated with changes in the

groundwater chemical environment (e.g., availability of organic and inorganic carbon,

dissolved oxygen, sulfur, nitrogen, phosphorus, and iron (Balkwill, 1989; Bengtsson,

1989; Chapelle, 1993; Marxsen, 1988)).  However, when such studies evaluate how these

different types of variables influence microbial community structure, they usually do so

at a very broad scale, and rarely consider how the spatial separation of organisms within

a system may influence population interactions and community dynamics.  There likely

exists a coupling of distance with community relatedness (a microbial community patch

size) at spatial scales below that of the aforementioned physical, chemical, and biological

variables.  Studies in other environments suggest that the scale of bacterial patchiness can 
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be quite small; for example, the patch size of a microbial community in agricultural soils

was estimated to be approximately one meter (Balser and Firestone, 1996), and marine

bacterioplankton communities exhibit strong patchiness at the centimeter scale (Duarte

and Vaqué, 1992).

 The present study examined two chemically distinct zones of a shallow aquifer

(well-defined regions of low-oxygen and aerobic groundwater) to evaluate the extent to

which differences in aquifer redox chemistry may influence the genetic structure of the

resident microbial communities.  At the research site, the proximity of the two zones of

groundwater flow, and the fact that they percolate through sediment from a similar

depositional environment, eliminated the need to consider differences in macro-

environment (e.g., rainfall and climate or variation in sediment properties) that may also

influence microbial community development in the subsurface.  Within these two zones,

a fundamental question motivating the research was whether the scale of microbial

community relatedness occurred on a scale similar to that of the major chemical

differences (i.e., aerobic versus anaerobic conditions).  

Several samples were collected within each chemical zone of the aquifer and

randomly amplified polymorphic DNA (RAPD) was used to compare genetic community

structure and estimate percent similarity among the different communities (Franklin et

al., 1999a).  RAPD analysis showed that the communities in the anaerobic and aerobic

regions of the field were quite different.  Some temporal variation in community structure

was observed and those changes paralleled fluctuations in the groundwater chemistry of 
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the wells over the same time period.  There was little correlation between community

relatedness (percent similarity between wells) and spatial separation of the sampling

locations, either throughout the entire field, or within each region. Although the

communities were distinctly different in the two regions of the field, community patch

size was smaller than the smallest sampling separation distance, viz. 10 m. 

5.2.  Materials and methods

5.2.1.  Site descriptions and sampling schedule

The research site is a shallow coastal plain aquifer on the lagoonal shoreline of

Virginia’s Eastern Shore, located in a small (1.7 ha), abandoned agricultural field.  This

surfacial aquifer is approximately 24 – 30 m thick, and the depth to the water table across

the sloping field varies from 1 m to about 6 m.  A distinct zone of oxygen-depleted

groundwater surrounds a mass of buried vegetable waste, from a tomato cannery, on the

far north side of the field (Figure 5.1).  The anoxic conditions (below 0.5 mg liter-1

dissolved oxygen) extend down-gradient, while the water in the rest of the field is

aerobic, consistent with the regional groundwater.  Dissolved oxygen concentration in the

aerobic region varies seasonally between 5 and 11 mg liter-1 (Knapp, 1997). In the zone

we have termed anaerobic, dissolved oxygen concentrations are always at or near 0

(always below 1 mg liter-1), except for occasions when large storms bring oxygenated

water downward to the surface of the aquifer.  Other chemical analyses have shown that

these two regions of the field differ in the amount of nitrate, alkalinity, ammonia, and

dissolved iron present (Table 5.1) in a manner consistent with oxygen depletion and
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Figure 5.1.  Map of the Oyster field site displaying sampling wells and regions of
aerobic and anaerobic groundwater.  The hydrologic gradient at the site points roughly
eastward.  To the north lies the organic contamination, buried vegetable waste from a
tomato cannery.  

N
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Table 5.1.   Concentrations for a number of groundwater constituents in the aerobic and
anaerobic portions of the aquifer.  The range presented represents observed values from
16 sampling efforts between June 1994 and November 1996.  Data from Knapp (1997).

Parameter Aerobic Zone1 Anaerobic Zone2

pH 5.3 - 6.5 5.9 - 6.6
Alkalinity (mg liter-1 HCO3

-) 18.3 - 39.7 150 - 384
DOC (mg liter-1) 1.72 - 4.47 2.22 - 5.86
Dissolved Oxygen (mg liter1) 5.0 - 10.6 < 0.9
Total Dissolved Iron (mg liter-1)3 0.0001 - 0.01 12 - 42
Sulfate (mg liter-1 ) 28.8 - 36.5 26.2 - 44.2
Nitrate (mg liter-1) 40 - 50 0 - 1
NH4

+ (mg liter-1 N) 0 0.434 - 2.42

1 These values for groundwater chemistry are from well PL2, an aerobic well ∼55 m
directly up-gradient from wells C3 and B3 that were sampled in this project.

2 Values from well D1.

3 Samples were filtered and acidified in the field, returned to the laboratory and passed
through a cadmium column to reduce Fe3+ to Fe2+ followed by colorimetric analysis by
the Ferrozine assay (Stookey, 1970).
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reducing conditions.  Moreover, average microbial abundance, measured by acridine

orange direct counts (AODC), differs between the two zones and higher concentrations of

cells are found in the anaerobic zone (well D1: 5 ×106 cells ml-1; well W2: 3 × 107; wells

C3 and B3: 3 × 105 (Lancaster and Mills, 1995)). 

Several groundwater wells, constructed of 2-inch diameter PVC, have been

installed throughout the field (Figure 5.1), and nine of them were chosen for use in this

study.  Wells B3, C3, W3, and MG2 (in the aerobic zone), and wells F1, E2, D1, W2, and

PL4 (in the anaerobic zone) were sampled in August 1997.  Four of these wells, two

aerobic (B3 and C3) and two anaerobic (D1 and W2), were further sampled in June 1997

and January 1998.  

5.2.2.  Sample collection

To isolate the microbial community for analysis, water samples were concentrated

by filtration onto 0.22-µm pore-size polycarbonate membranes after pre-filtration through

AE glass-fiber filters.  Prior to sample collection, each well was purged for 10 - 15 min.

For the June 1997 sampling, approximately 20 liters of water were filtered, onto a single

filter.  However, preliminary analysis of these samples indicated that the amount of DNA

obtained was far in excess of that needed for RAPD community profiling, so further

sampling efforts focused on replication rather than collecting large volumes of water.  In

August 1997 and January 1998, three replicate samples of approximately 5 liters each

were filtered at each well.
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After each sampling, filters were quickly frozen in dry ice and ethanol (within 5

hours of collection), transported to the lab on dry ice, and stored at -80°C.  Filters were

later processed and whole-community DNA was extracted as described elsewhere

(Franklin et al., 1999a).  An additional purification step, using the High-Pure PCR

Template Preparation Kit (Boehringer Mannheim, Indianapolis, IN), was added to the

original procedure and the isolated DNA was resuspended in 100 µl of 10 mM Tris

buffer (pH 8.5).

5.2.3.  RAPD 

After extraction of whole-community DNA, RAPD amplification reactions were

carried out in a volume of 25 µl using the procedure suggested by Williams et al. (1990)

with slight modification.  A 5 µl portion of a DNA solution was added to a 20 µl reaction

mixture containing: 10 mM Tris-Cl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 100 µM each

of dATP, dCTP, dGTP, and dTTP, 0.2 µM primer, and 1 unit of Taq DNA polymerase

(Perkin Elmer, Norwalk, CT).  Reaction mixtures were covered with one drop of mineral

oil and amplifications were performed in a Hybaid PCR Express Thermal Cycler

programmed for 45 cycles of 1 min at 94°C, 1 min at 36°C, and 2 min at 72°C.  PCR

products were separated by electrophoresis in 1% agarose gels, stained with ethidium

bromide, and photographed under UV light. 
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The amount of DNA entering each PCR reaction was standardized so that

differences in the concentration of cells at each groundwater well would not artificially

bias the RAPD results.  For the June samples, the concentration of DNA was estimated

using PicoGreen dsDNA quantification reagent  (Molecular Probes, Eugene, OR) and

approximately 400 pg of DNA were used in each PCR reaction.  DNA yields from

August and January were expected to be much lower, based on the smaller volume of

water sampled, and, because of the desire not to sacrifice sample for quantification

purposes, standard spectrophometric/spectrofluorometric quantification procedures were

not used.  Instead, the DNA concentration was normalized across all August and January

samples based upon the number of bacterial cells entering the extraction procedure

(Franklin et al., 1999a).  Extractions were performed on approximately 108 cells. 

Several arbitrary primers, purchased from Operon Technologies (Alameda, CA),

were used to profile all three sets of samples: C4 (5’ CCGCATCTAC 3’), D5 (5’

TGAGCGGACA 3’), F4 (5’ GGTGATCAGG 3’), F1 (5’ ACGGATCCTG 3’), F14 (5’

TGCTGCAGGT 3’), S10 (5’ ACCGTTCCAG 3’), and T7 (5’ GGCAGGCTGT 3’).

Additionally, primer F3 (5’ CCTGATCACC 3’) was used for the June and August

samples, and primers F7 (5’ CCGATATCCC 3’) and S14 (5’ AAAGGGGTCC 3’) were

also used for the June samples.  This resulted in an overall comparison of 70 bands in

June, 97 bands in August, and 76 bands in January.  Within a set of samples, nearly all of

the bands were variable (8 % were present in all samples screened), and an individual

well sample contained between 18 and 42 bands.
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5.2.4.  Data analysis

For each primer, each band observed on the agarose gel was treated as a unit

character and scored as present or absent in each sample.  The data sets from each primer

were then consolidated and a distance matrix was calculated using the Jaccard coefficient

(Sneath and Sokal, 1973).  Dendrograms were constructed using UPGMA clustering and

a bootstrapping procedure was used to assess the significance of the groupings and

subgroupings in each dendrogram (Stackebrandt and Rainey, 1995; Swofford et al.,

1996).  

In this research, the bootstrapping was accomplished by first using “SEQBOOT”

in PHYLIP (Version 3.5 c) to bootstrap the presence/absence (1/0) data sets 100 times

(Felsenstein, 1993).  Each of the resultant data sets was then fed into the clustering

program of SPSS (Version 8) and similarity matrixes were determined using Jaccard’s

coefficient.  Next, distance matrices (Dissimilary = 1 – Similarity) were computed and

the “NEIGHBOR” subroutine of PHYLIP was used generate 100 different recomputed

trees.  The “bootstrap value”, the proportion of recomputed trees that contain a given

node, was then determined by feeding the tree file from “NEIGHBOR” into the

“CONSENSE” subroutine of PHYLIP.

Principal component analyses (SPSS, Version 8) of the original data were also

performed and, diagrams of the first two principal components were constructed.

Though PCA is not typically recommended for use with binary data such as these, it is

often used as an alternate means of visualizing the relationships from the different RAPD

profiles (Demeke and Adams, 1994; Franklin et al., 1999a; Wikström et al., 1999). 
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To compare the spatial distribution of the microbial communities in the field,

plots were made of relative community similarity (as determined by the Jaccard

coefficient) versus distance between sampling locations.  Additional graphs were made to

evaluate this relationship separately in the aerobic and anaerobic zones.  An analysis of

covariance (ANCOVA) was then used to determine whether the relationship between a

pair of communities was more influenced by chemical zone (are the two samples from

the same or different chemical regions of the field?) or by spatial separation.  Average

genetic similarity between each pair of communities was used as the dependent measure

and the distance between each pair of wells was the covariate.  Chemical “zone” was

coded into three groups: 1 - both communities sampled from aerobic wells, 2 - both

communities sampled from anaerobic wells, and 3 - samples compared from different

chemical zones of the field.

5.3.  Results

5.3.1.  Spatial distribution of communities within the field

5.3.1.1.  Principal components and cluster analyses

Cluster analysis of all nine wells sampled in August showed a clear separation of

the microbial communities in the anaerobic and aerobic zones of the aquifer; however,

well E2 did not fall within either group (Figure 5.2).  Although high bootstrap values

were calculated for the internal nodes of the dendrogram, the larger groupings of

"aerobic" and "anaerobic" were not well supported.  This is because, in the different

bootstrapping runs, well E2 moved between these two clusters, and the fluctuation of this
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Figure 5.2.  Dendrogram displaying the results of a cluster analysis of all nine wells
sampled in August 1997.  The scale along the top represents similarity, the three prongs
for each well represent independent replicates (separate 5-liter fractions of water
collected from each well), and the numbers at each node are bootstrap values (bootstrap
performed using 100 replications).
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single well accounted for the low bootstrap values associated with the two major clusters

(aerobic/anaerobic (Figure 5.2)).  When the E2 data were excluded from the cluster

analysis, the same overall pattern of separation of the communities was seen but with

higher bootstrap values (complete results not shown, see Figure 5.5B for example).

Considering well E2's groundwater chemistry, and the fact that it is physically

positioned between wells F1 and D1, the expectation was that it would closely resemble

the communities from the other anaerobic wells.  Instead, the communities in E2 were

equally similar to the communities from the aerobic or the anaerobic zones of the field.  It

is possible that a sampling error occurred at E2 and insufficient purging of the well prior

to collection may have caused these puzzling results.  If the well was not adequately

purged, the microbes sampled may have been part of a different community, associated

with the stagnant water in the well.  Apart from this one well, the PC plot (Figure 5.3)

shows a clear separation of the communities that correlates with the large change in

dissolved oxygen availability.  Communities from the aerobic wells have very low scores

(negative) on PC 1, wells near the aerobic/anaerobic boundary have scores close to zero,

and the wells in the anaerobic zone have positive values.  When the PCA was rerun

without the E2 data, tighter clusters formed and greater separation occurred between

groups in the principal components plot.  

In the cluster analysis, the communities from the aerobic wells were further

divided into two subgroups (MG2, B3, and W3 separated from C3).  However, this

separation was poorly supported by the data (bootstrap value of 22) indicating that 
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Figure 5.3.  PCA of the RAPD profiles for all nine groundwater wells sampled in August
1997.  The three points for each well represent independent replicates (separate 5-liter
fractions of water collected from each well).  The black symbols are samples collected
from the anaerobic zone of the field; the white symbols represent aerobic wells.  The
percent of variance explained by each principal component is listed.
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community structure did not differ greatly among the aerobic wells.  This conclusion is

further supported by the principal components analysis (Figure 5.3) that shows little

separation of the communities from the different aerobic sampling locations.

Within the cluster of anaerobic wells (F1, PL4, D1, W2), the communities in

wells F1 and PL4 grouped together as did D1 and W2 (Figure 5.2).  Though neither of

these subgroups was particularly well supported in the cluster analysis (bootstrap values

of 17 and 31 respectively), they did separate on the first axis of the principal components

plot, suggesting that these subdivisions may be relevant.  Both F1 and PL4 lie near the

boundary of the anaerobic/aerobic regions, where fluctuations in the water table could

cause these wells to experience a wide range of environmental conditions.  On the other

hand, wells D1 and W2 lie deeper in the anaerobic zone, closer to the source of the

organic contamination, and are most similar to one another. 

5.3.1.2.  Comparison of community relatedness and spatial separation

The spatial distribution of communities within the well field was compared by

plotting average relative similarity between each community (as determined by the

Jaccard coefficient) versus spatial separation (distance in meters).  Because of the

increased hydrological linkage and more similar water chemistry of spatial proximal

wells, it was expected that genetic similarity would be high when the distance between

communities was small, and would decrease when comparing more distant pairs of wells.

In fact, no such relationship was found (Figure 5.4).  Exclusion of the E2 data, as its

comparison with other wells may result in a calculation of percent similarity that is 
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Figure 5.4.  Plot of community genetic similarity verses distance between sampling
locations for all samples from August 1997.  The closed symbols represent distances and
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calculated between anaerobic wells, and the crosses represent values calculated between
aerobic and anaerobic wells.
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unusually low, had no effect.  Furthermore, graphs made of the anaerobic and aerobic

zones separately showed no relationship between community similarity and distance

(results not shown).

To examine the relative importance of spatial separation versus groundwater

chemistry on the observed patterns of community structure, an analysis of covariance

(ANCOVA) was calculated comparing average similarity between communities.  Each

pair of communities was grouped as being from the same chemical zone, either both

aerobic wells or both anaerobic wells, or as being from different zones.  The average

similarity for any two communities was greater if they were from the same chemical zone

(average similarity for aerobic pairs: 0.27, anaerobic pairs: 0.21, different zone pairs:

0.18, p = 0.0035) but the influence of spatial separation on this relationship was not

significant (p = 0.621).  As with the cluster and PC analyses, these results suggest a more

homogeneous distribution of communities in the aerobic zone of the aquifer.

5.3.2.  Temporal consistency of anaerobic/aerobic patterns in community structure

Temporal variability of the microbial communities in these two zones of the

aquifer was assessed by comparing four wells (two anaerobic (D1 and W2) and two

aerobic (C3 and B3)) at three different times: June 1997, August 1997, and January 1998

(Figure 5.5).  In all three cases, the communities from the aerobic and anaerobic zones

separated, though the specific relationships among wells changed.  In June and August,

two distinct clusters formed, one aerobic (wells B3 and C3) and the other anaerobic (D1 
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and W2), and these were supported by high bootstrap values (Figure 5.5 A and B).  In

January, B3 and C3 formed a well-supported aerobic cluster (bootstrap value of 82) but

the relationship of the anaerobic wells changed - W2 moved within the clade containing

the aerobic wells, and D1 remained distinct (Figure 5.5 C).  

To examine how the communities changed over time, the summer and winter

samples were compared using a principal component analysis performed on the

combined August and January datasets (Figure 5.6).  Because a different concentration of

DNA was used in the RAPD profiling of the June samples, a direct analysis comparing

those results with the later samplings could not be made; however, August and January

profiles were generated using the same starting concentration of DNA in the PCR

reaction.  Analysis of the pooled data showed that the profiles for the aerobic wells were

consistent over time, but that the communities in both W2 and D1 changed between the

two sampling dates.  The communities in these two wells became more like the

communities from the aerobic zone (W2 moved toward the aerobic communities on PC1,

D1 moved through them on PC2 (Figure 5.6)).  

Quarterly monitoring of several groundwater chemical parameters (including pH,

alkalinity, dissolved oxygen, ammonium, phosphate, dissolved iron, calcium,

magnesium, potassium, and manganese) has been taking place at this site for several

years and Figure 5.7 shows a principal components plot comparing the Summer 1997 and

Winter 1998 chemical samplings for wells D1, W2, W3, and B2 (L. Lancaster,

unpublished data).  Unfortunately, data were not collected for either B3 or C3, the two

aerobic wells 
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Figure 5.5.  Dendrograms displaying the results of a cluster analysis of the four
groundwater wells sampled for the temporal comparison.  The scale along the top
represents similarity and the numbers at each node are bootstrap values (bootstrap
performed using 100 replications).  (A) June 1997 (B) August 1997 and (A) January
1998.  In (A) a single 20-liter sample was collected from each well.  For (B) and (C) the
three prongs for each well represent independent replicates (separate 5-liter fractions of
water collected from each well).
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Figure 5.7.  PCA of overall groundwater chemistry in Summer 1997 and Winter 1998.
As in Figure 5.6, the filled symbols represent the Summer samples and the open symbols
represent the following Winter’s samples.  The percent of variance explained by each PC
is listed.  
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compared with RAPD profiling, so B2 and W3 were used as proxy measures of their

chemical patterns (a reasonable substitution given the relative homogeneity of the water

chemistry in the aerobic zone).  The principal components plot shows that the chemical

patterns in the anaerobic wells change over time, becoming more like what is seen in the

aerobic wells - the same shift observed for the genetic composition of the community

(Figure 5.6).    The chemical parameters that loaded highly in the principal components

analysis were: PC1 - pH, alkalinity, dissolved oxygen, iron, and soluble cations, PC2 -

ammonium.

5.4.  Discussion

In this aquifer, the distinct regions of aerobic and anaerobic groundwater

supported different microbial communities.  Within the aerobic zone, where the

groundwater chemistry was fairly homogeneous, the communities from the various wells

were quite similar. The degree of similarity among the wells in the anaerobic region was

less than in the aerobic zone, and reflected the higher level of dissimilarity in the

chemical conditions found in the anaerobic area. Beyond this, the expectation was that

spatially proximal communities would be more similar than spatially distant ones, based

on the notion that nearby wells would be more hydrologically linked and have more

similar water chemistries.  Failure to find such a relationship indicates that the distance

between sampling locations was greater than the scale at which the microbial

communities organize.  Although it is clear that the groundwater environment is

heterogeneous, there are relatively few data available on the spatial and temporal scales



161

of variance in these systems.  The results of this research imply that a great deal of

variance in microbial community structure exists below the scale of measurement used

(10 m) even within environments thought to be fairly homogeneous (e.g., within the

aerobic zone).  Indeed, the findings of Balser and Firestone (1996) and Duarte and Vaqué

(1992) suggest that variance scales on the order of 10 to 100 cm may be expected, a

distance less than the minimum inter-well distance at the field site. Some studies indicate

microbial variance scales on the order of 1 to 3 m in cropped soils (Wollum and Cassel,

1984). However, other studies indicate a larger range of spatial scales of variability: 10

to100 m for microbiological activities in seafloor sediments (Lavigne et al., 1997), and

30 cm to 150 m in a study of spatial variation in the surface sediment of the Okefenokee

swamp (Moran et al., 1987). In general, these scales appear to reflect the scales of

heterogeneity in distribution of physical and chemical properties of the environment

under examination.   The results presented here indicate the need to consider other

hydrological, physicochemical, and biological factors, besides those evaluated in this

work, that might influence patch size (e.g., particulate and dissolved organic material,

permeability, porosity, grain size, or substrate stability) before developing expectations

about the patterns of distribution of microbiota in groundwater.  

In the anaerobic zone, the results suggest two different sorts of communities may

be present; the communities from the wells near the aerobic/anaerobic boundary were

different from those more interior to the anaerobic zone.  Given the potential for a change

in water chemistry as water moves through the anaerobic zone, and the hydrologic

character of the site, this is a reasonable separation.  Wells along the boundary experience
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a wider range of environmental conditions, both hydrological and chemical, compared to

the more interior wells.  For example, dissolved oxygen concentrations as high as 6.5 mg

liter-1 have been recorded in the anaerobic boundary well PL4 following major

precipitation events.  However, the highest recorded concentration of dissolved oxygen

for in well W2 (interior of the anaerobic region) was 1.5 mg liter-1 (Callaghan, 1999).

The microbial communities in the aerobic and anaerobic regions of the aquifer

remained genetically distinct over time.  Between summer and winter, community

structure changed somewhat and these changes were similar in magnitude and direction

to changes in groundwater chemistry during the same period.  Communities from the

aerobic wells, and the groundwater chemistry in that region, remained relatively constant

at the different sampling times.  In January, however, the communities in the anaerobic

wells had changed significantly from earlier sampling dates; the profiles shifted so that

the communities approached what is typically found in the aerobic zone.  A similar

change was observed in the overall pattern of groundwater chemistry for those wells.  For

well D1, where the change in groundwater chemistry was greatest, the microbial

communities acquired some characteristics of the aerobic communities (moved through

them on PC 2 (Figure 5.6)), but also some unique characteristics (which separate it from

the other communities in Figure 5.6). 

During the month prior to the January sampling, the research site received an

unusually large amount of precipitation, and the input of this water to the aquifer may

partly explain the observed changes in community structure and groundwater chemistry

in the January/Winter samplings.   The average monthly precipitation at the site is 73.5
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mm (1997 and 1998 average) and the average winter precipitation is 98.9 mm month-1.

However, the total precipitation in January 1998 was 166.9 mm and nearly half (80.3

mm) of that fell during the week prior to sampling. Water from such precipitation events

can be an important source of dissolved oxygen in shallow aquifers (Chapelle, 1993), and

the percolation of oxygenated rainwater into this aquifer just prior to the January

sampling could have caused the shift in the water chemistry of the anaerobic wells,

making them more like the aerobic wells.  Moreover, recharge events such as this may

facilitate transport of dissolved nutrients into the flow system, either from the surface or

as the water passes through the unsaturated zone, reducing the differences in water

chemistry between the two regions of the aquifer.  In contrast to the 80.3 mm of rain

falling at the site in the week before sampling in January 1998, only 5.1 mm of total

precipitation occurred during the 3 months prior to the August 1997 sampling. The sharp

differences between the two zones of the aquifer during the summer may have reflected

the absence of a recent recharge event.  

The potential for precipitation events to dramatically impact this aquifer can be

further illustrated by considering fluctuations in the water table levels over this same time

period.  For example, the water level in well W2 was 2.56 m (above mean sea level)

during the August sampling and 3.38 m on the January sampling date  (increase of 0.82

m (Callaghan, 1999)).  Seventy percent of this increase (0.57 m) occurred during the

three weeks prior to the January sampling, representing a major influx of water to the

system over a relatively short time period.  Further research is necessary to determine

whether the sort of community turnover observed in this aquifer is a regular (i.e.,
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seasonal) aspect of the system and to evaluate what level of disturbance (e.g., quantity

and rate of precipitation) might be required to elicit a community response.  Another

factor that must be investigated is the response time - how long after an event do changes

in the microbial communities become visible?  Do these changes persist and, if so, for

how long? 

This study of groundwater microbial communities employed a relatively novel

procedure (RAPD) for visualizing the overall differences between the microbial consortia

at the different sampling locations.  Because RAPD uses short primers of an arbitrary

sequence to direct the PCR amplification, it may provide a more complete representation

of the genetic structure of the entire community, compared to many of the more

traditional PCR-based procedures which rely on amplification of sequences from specific

organisms, groups of organisms, or genes.  Monitoring the entire community as a unit,

rather than gathering information on the presence/abundance of individual types of

organisms, allowed for a more comprehensive comparison of the overall community

dynamics and the physical and chemical conditions of the site.  Major differences (both

spatial and temporal) were observed within the well field and were qualitatively

correlated with changes in the overall groundwater chemistry at each well.  This research

suggests that microbial communities in aquifers may track spatial and temporal variation

in the environment to such an extent that distinct microbial communities tend to converge

genetically as their environments become more similar.  It remains to be seen how shifts

in abundance of different microbial taxa are responsible for these changes and the spatial

and temporal scale at which these changes in abundance take place.  
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Chapter 6.

A geostatistical analysis of small-scale spatial variability in bacterial
abundance and community structure in salt-marsh creek bank sediments.

Franklin, R. B., L. K. Blum, A. C. McComb, and A. L. Mills.  2002.  FEMS Microbial Ecology.  42:71-80.
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Abstract 

Small-scale spatial variations in bacterial abundance and community structure were

examined in salt-marsh sediments from Virginia’s Eastern shore.  Samples were collected

at 5-cm intervals (horizontally) along a 50-cm elevation gradient, over a 215-cm

horizontal transect.  For each sample, bacterial abundance was determined using Acridine

Orange Direct Counts (AODC), and community structure was analyzed using Randomly

Amplified Polymorphic DNA (RAPD) fingerprinting of whole-community DNA

extracts.  A geostatistical analysis was used to determine the degree of spatial

autocorrelation among the samples, for each variable and each direction (horizontal and

vertical).  The proportion of variance in bacterial abundance that could be accounted for

by the spatial model was quite high (vertical: 60 %, horizontal: 73 %); significant

autocorrelation was found among samples separated by 25 cm in the vertical direction

and up to 115 cm horizontally.  In contrast, most of the variability in community structure

was not accounted for by simply considering the spatial separation of samples (vertical:

11 %, horizontal: 22 %), and must reflect variability from other parameters (e.g.,

variation at other spatial scales, experimental error, or environmental heterogeneity).

Microbial community patch size based upon overall similarity in community structure

varied between 17 cm (vertical) and 35 cm (horizontal).  Variability due to horizontal

position (distance from the creek bank) was much smaller than that due to vertical

position (elevation) for both community properties assayed.  This suggests that processes

more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale

(therefore producing smaller patch sizes) than processes controlled by distance from the

creek bank.  
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6.1. Introduction

Although individual bacterial cells function at a scale that befits their small size

(Brock, 1987), their combined localized activities mediate processes that are important at

the landscape scale.  It is at this scale that microbial reactions are most often studied, and

a great deal of effort is currently being expended to try to relate the structure of these

communities to observed functional phenomena.  When studying microorganisms, the

boundaries used to define a community are generally utilitarian and dictated by the

required sample size, the researcher’s perception of environmental variability, and the

overall scale of the property of interest.  As a result, measurements of microbial

community attributes typically represent broad-scale characterizations and rarely consider

the small spatial scale at which individuals and populations may actually be interacting.  

Though the broad-scale approach to studying microbial communities has been

useful for monitoring large-scale changes in microbial dynamics, studies of microbial

community patch size are rare, and knowledge about the scales at which microbial

interactions and associations become important is incomplete.  The total capacity of

microbial communities in the environment is the sum of the activity of several “unit”

communities of microorganisms (Swift, 1984), in distinct microhabitats, whose separate

activities are pooled into what scientists observe as ecosystem function.  In order to

understand well how these spatial units fit together and how the activity of the distinct

units contributes to overall ecosystem function, a better understanding of the distribution

of microorganisms (and microbial communities) in space is needed.  
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In sampling theory, spatial scale is defined by several characteristic properties:

grain size, sampling interval, and extent (Legendre and Legendre, 1998).  Grain size is

the size of the elementary sampling units (e.g., the volume of sample), and defines the

resolution of the study (Schneider, 1994).  Sampling interval is the average distance

between sampling units, and the extent is the total area included in the study.  Depending

on the ecological question being addressed, and what is already known about the scale of

the process of interest, the dimensions of these components vary.  For a given sampling

design, no structure can be detected that is smaller than the grain size or larger than the

extent of the study; in this way, the sampling design defines the observational window for

spatial pattern analysis (Legendre and Legendre, 1998).  

Previously, researchers have considered the spatial distribution of microorganisms

in many different environments and at a variety of spatial scales.  In ecological studies,

the grain size is generally too large to permit analysis of the location or activity of

individual organisms, though experiments have been conducted at the microscale to

examine these properties (Bockelmann et al., 2002; Dandurand et al., 1995; Guggenheim

et al., 2001; Manz et al., 2000; Nunan, et al., 2001).  For example, electron microscopy

has been used to study the rhizosphere colonization patterns of Pseudomonas

flurorescens using a sampling interval of 5 µm (Dandurand et al., 1997).  At larger scales,

studies in agricultural soils have demonstrated that significant spatial heterogeneity may

exist for microbiological processes (Bending et al., 2001; Grundmann and Debouzie,

2000), community structure (Balser and Firestone, 1996; Cavigelli et al., 1995), and

abundance (Nunan et al., 2001; Wollum and Cassel, 1984); patch size estimates range

widely from as small as 2 mm (Grundmann and Debouzie, 2000) to nearly 10 m
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(Franklin and Mills, 2003).  Similar studies have been conducted in grassland and forest

soils (Both et al., 1992; Kuperman et al., 1998; Morris, 1999; Ritz et al., 2001; Robertson

et al., 1988; Saetre and Bååth, 2000), in a shallow coastal aquifer (Franklin et al., 1999b),

and in the open ocean (Duarte and Vaqué, 1992; Mackas, 1984).  For salt-marsh and

marine sediments, variation has been examined at small scales (i.e., < 1 m2 (Berardesco et

al., 1998; Danovaro et al., 2001; Scala and Kerkhof, 2000)), and at intermediate (< 150 m

(Moran et al., 1987)) and larger distances (e.g., km (Scala and Kerkhof, 2000)).  In

general, all of these studies reveal that microbial communities can be organized at a

variety of spatial scales, which likely reflect the scales of heterogeneity in the distribution

of physical and chemical properties for the environment under investigation.  

In addition to the theoretical implications that motivate research about the spatial

distribution of microorganisms, the results of such studies have important practical

applications for scientists designing and planning experiments at the field and landscape

scales.  While many ecological theories and models acknowledge that elements that are

close to one another in space or time are more likely to be influenced by the same

generating processes, the same energy inputs, or a similar physical environment, the

classical statistical procedures employed to analyze these phenomena assume

independence of observations.  Statisticians generally count one degree of freedom for

each independent observation, which allows them to choose an appropriate statistical

distribution for testing; the lack of independence that arises from the presence of

autocorrelation makes it difficult (in many cases, impossible) to accurately determine the

number of degrees of freedom and correctly perform tests such as correlation, regression,

or analysis of variance.  Positive autocorrelation reduces within-group variability,
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artificially increasing the amount of among-group variance, and often leads to the

determination that differences among groups are significant, when in fact they are not

(Legendre et al., 1990).  

Some procedures exist that allow researchers to make corrections and perform

statistical analyses in the presence of spatial autocorrelation; for an overview, see: Cliff

and Ord (1981), Legendre et al. (1990), Legendre (1993), Legendre and Legendre (1998),

and Oberrath and Bohning-Gaese (2001).  However, the application of these techniques is

often limited by constraints such as sample size or the physical distribution of sampling

locations (e.g., a procedure may require sampling locations to be regularly spaced along a

grid (Legendre et al., 1990)).  Another solution is to design a sample collection scheme so

that there is little spatial structure present in the data, and then use parametric statistical

hypothesis tests.  In this case, samples must be collected close enough together that they

represent replicates of the system under investigation, but they must be placed far enough

apart to avoid autocorrelation.  Regardless of which approach one chooses (correction of

statistical procedures or modification of experimental design), it is first necessary to

describe the type of autocorrelation present in a variable (e.g., gradient vs. patches) and

estimate its extent.  There are several procedures available to test for the presence of

spatial structure in ecological data (for reviews, see: Goovaerts (1998), Legendre (1993),

Legendre and Fortin (1989), Robertson (1987), and Rossi et al. (1992)); geostatistics is

one powerful tool that can provide insight into spatial structure and quantitatively

describe spatial variation by expressing a measure of association, or autocorrelation,

between two samples as a function of the distance between them.  Geostatistical analyses

are commonly used in soil and mineral science, but less so in microbial ecology
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(Castrignanò et al., 2000; Dobermann et al., 1995; Franklin and Mills, 2003; Grundmann

and Debouzie, 2000; Kuperman et al., 1998; Mackas, 1984; Morris, 1999; Murray, 2001;

Ritz et al., 2001; Schlesinger et al., 1996).  

The purpose of the present study was to examine the spatial structure of microbial

communities in salt-marsh sediments using traditional geostatistical techniques.

Sampling of unvegetated creek bank sediment in a Spartina alterniflora dominated salt

marsh was done at 5-cm intervals; the community in the samples was characterized

microscopically (for total concentration of bacterial cells) and with DNA fingerprinting

(to determine the overall genetic similarity between communities).  These data were then

analyzed to determine microbial community patch size, the amount of spatial

autocorrelation among the samples, and the relative importance of horizontal (distance

from creek bank) versus vertical (elevation) separation of communities.  Each of the

analyses performed confirmed that spatial autocorrelation existed at a relatively small-

scale (10 – 100 cm).  In general, spatial structure in abundance was organized with a

correlation length scale larger than that for community structure, and the patch size for

the communities was greater in the horizontal direction than in the vertical.  These results

suggest that the study of salt marshes at spatial scales such as these could provide insight

into structuring and distribution of microbial communities in these systems, and help

scientists to understand within-marsh biogeochemical process variation.  Moreover, the

work has important implications for researchers conducting field experiments as it

indicates that sampling of these sediments at spacings less than the correlation length

scale of the property of interest may result in inaccurate statistical analyses and incorrect

conclusions.
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6.2.  Materials and methods

6.2.1. Sample collection

Sediment samples were collected from Phillips Creek marsh in the Virginia Coast

Reserve Long Term Ecological Research site (VCR-LTER), on Virginia’s Eastern Shore,

during September of 1999. The area sampled (37° 27.496´N, 75º 50.075´W) was an

unvegetated, intertidal portion of the bank of a minor tributary of Phillips Creek.  For

each sample, a small core was taken from the surface of the marsh to a depth of

approximately 5 cm, using de-tipped, 10-mL plastic syringes.  The 44 sampling locations

in this study ranged vertically over 50 cm of elevation; position was measured to the

nearest 0.25 cm.  The samples were not regularly spaced over the elevation gradient, but

the average separation between any pair of adjacent samples was 1.5 cm. The sampling

locations were regularly spaced at 5-cm intervals in the horizontal direction, ranging over

a length of 215 cm (Figure 6.1).  

After collection, the sediment samples were transported to the lab on dry ice, and

stored at -20°C until Acridine Orange direct counts (AODC) (Bottomley, 1994; Hobbie et

al., 1977) and DNA extractions could be performed.  

6.2.2.  DNA extraction and quantification

Microbial community DNA was extracted from the sediment samples using the

MoBio UltraClean Soil DNA isolation Kit (Solana Beach, CA); the amount of sediment

used in each extraction ranged from 0.25 g to 0.83 g.  The amount of sediment used in

each extraction was varied, based upon cell counts (AODC), so that the concentration of 



173

Horizontal position (cm)

-25 0 25 50 75 100 125 150 175 200 225

Ve
rt

ic
al

 p
os

iti
on

 
(c

m
 b

el
ow

 to
p 

of
 m

ou
nd

)

-50

-40

-30

-20

-10

0

approximate range
of tidal fluctuation

sediment always saturated

frequently flooded

occasionally
flooded

rarely 
flooded
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locations were divided into four groups based on their flooding frequency and elevation. 
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DNA obtained from each sample would be approximately equal.  Cells were lysed using

the vortex procedure described in the kit documentation.  Purified DNA was resuspended

in 10 mM Tris buffer and stored at -20°C.  The concentration of DNA from each sample

was measured using the PicoGreen dsDNA quantification kit (Molecular Probes, Eugene

OR).  

6.2.3.  RAPD community fingerprinting

6.2.3.1.  RAPD conditions

Randomly Amplified Polymorphic DNA (RAPD) reactions were performed as

previously described (Franklin et al., 1999a).  Briefly, a 5-µl portion of a DNA solution

(containing approximately 350 pg DNA) was added to a 20-µl reaction mixture

containing:  10 mM Tris-Cl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 100 µM each of

dATP, dCTP, dGTP, and dTTP, 0.2 µM primer (Operon Technologies, Alameda, CA),

and 1 unit of Taq DNA polymerase.  The PCR program consisted of 45 cycles of 1 min at

94°C, 1 min at 36°C, and 2 min at 72°C.  Amplification products were separated by

electrophoresis in 1.75 % agarose gels (premixed with ethidium bromide (0.25 µg ml-1)),

and photographed under UV light.  Each sample was amplified several times, each time

with a different RAPD primer (see below), and the results pooled to represent a single

community fingerprint.
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6.2.3.2.  Primer selection

Previous work, characterizing the pelagic microbial communities in Phillips

Creek (Franklin et al., 1999a), was used to guide primer selection in this study.  Each

primer successfully used in the earlier study was tested on a subset of the sediment

samples; criteria such as number of bands produced, clarity and distinctness of bands, and

reproducibility of the RAPD fingerprints were used to select the best primers to profile

the entire set of samples.  Primers C4, F1, F3, F4, F5, F7, and T7 were chosen (sequences

available in Franklin et al. (1999a) and from Operon Biotechnologies

(www.operon.com)).  These primers are short (10 bp), random sequences that can anneal

at numerous locations throughout a genome, and they are not selective for specific

organisms, groups of organisms, or genes.  Because of this, RAPD can detect sequence

variability that is distributed throughout the microbial DNA pool, theoretically producing

a fingerprint of the composite genetic composition of the entire community.  

6.2.3.3.  RAPD data analysis

After agarose-gel electrophoresis, the raw data from RAPD consist of a series of

bands, each corresponding to a certain size DNA fragment.  For each primer, each

amplification band was treated as a unit character and scored as present or absent in each

sample (i.e., recorded as 1 or 0).  The results for all of the primers were then pooled into a

single large dataset.  Collectively, these primers produced a total of 87 bands and

individual samples contained between 11 and 34 bands.  The average number of bands

produced for a given sample was 21.  
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6.2.4. Variogram analysis of spatial autocorrelation

In this study, the variation in bacterial abundance (as measured by AODC) and in

community structural similarity (as determined by RAPD fingerprinting) was compared

using a geostatistical semi-variogram analysis to study autocorrelation as a function of

distance.  The correlation between spatial separation and each community parameter was

modeled considering the two distance components (horizontal and vertical) separately,

rather than using the Euclidian distance between each set of samples, as it was not

expected that the scale of variability in the horizontal and vertical directions would be the

same.  Moreover, as the samples were taken along a slope, the vector connecting many of

the points (using Euclidian distance) passed through the air, rather than the sediment, so it

did not seem reasonable to use this separation distance to model the spatial

autocorrelation of the microbial communities.  Comparing each sampling location with

each of the other 43 resulted in a total of 946 points to analyze (this is the number of

points in the upper (or lower) triangle matrix between each sampling location).  

Prior to constructing a variogram, it was necessary to segregate the data into

distance classes (bins).  The purpose of binning the data was to obtain the best resolution

(maximum detail) at small distances without being misled by structural artifacts due to

whatever particular size class was chosen.  To determine the appropriate number of bins

for each analysis, Sturge’s rule (Legendre and Legendre, 1998) was used, which states

that the appropriate number of classes = 1 + 3.3 log 10 m, where m is the number of points

in either the upper or lower triangle matrix (in this case, 946); the calculation suggests

that 10 size classes are appropriate for this dataset.  Furthermore, variograms are 
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generally not valid beyond 1/2 of the maximum distance between samples, and so the

appropriate lag distance (the distance increment for each class) was calculated as the

maximum pair distance divided by 2, and then subdivided into 10 equal classes (Englund

and Sparks, 1991).  For the vertical direction, this resulted in a 2.5-cm lag distance; for

the horizontal direction, a lag distance of 10 cm was established.

To calculate a variance term for the AODC, each value was first normalized by

dividing it by the overall average concentration of cells among all samples.  The inverted

covariance was then calculated between each pair of samples using GEOEAS (Englund

and Sparks, 1991).  A traditional variance term could not be calculated for the RAPD

results (multivariate binary data); instead, the relative similarity between each pair of

samples was determined using the Jaccard coefficient (which is based upon the

proportion of positive bands shared by each sample pair (Sneath and Sokal, 1973)).  This

similarity matrix was then converted to a dissimilarity matrix (Dissimilarity = 1 -

Similarity), which represents the relative difference in community genetic structure

between each pair of samples.  Plots of relative dissimilarity versus spatial separation

distance should take the form of a typical variogram.  

Experimental variograms are often fit with a continuous function, to smooth out

sample fluctuations and estimate useful model parameters (e.g., the correlation length

scale (range) and the spatial dependence).  Several types of functions are available

including the linear, Gaussian, exponential, and spherical models.  A linear variogram

would indicate a linear spatial gradient, and would represent a situation where the

samples are spatially autocorrelated at all distances measured (the sampling distance is 



178

not large enough to capture all of the spatial variability at that scale).  Gaussian,

exponential, and spherical models are bounded in that they level off, either at a given

range value (spherical model) or asymptotically (exponential and Gaussian models).

Differences between these functions lie mostly in the shape of the left hand portion of the

curves, near the origin; in practice, the spherical and exponential models do not differ

much (Legendre and Legendre, 1998).  Several authors have warned against the risk of

numerical instability associated with the Gaussian model, and it is rarely used at this

point (Goovaerts, 1998).

For each parameter (community structure and AODC), separate variograms were

constructed for each direction (horizontal and vertical).  Data were then fit with an

exponential model, as suggested by Legendre and Legendre (1998):

)]3exp(1[10 a
xCCy −−+=

where y is the variance term (either inverted covariance (for AODC) or dissimilarity (for

genetic community structure)), and x is the spatial separation distance.  From the model,

C0, C1, and a were estimated; C0 is a parameter quantifying the nugget effect (the amount

of variability at distance = 0), C1 is a spatially structured component of the model, and a

is the range (the distance beyond which variance is no longer a function of spatial

separation).  The sill (C) is the y value at which the variogram levels off, and was

calculated as: C = C0 + C1.  
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One difficulty with using equal distance classes when constructing a variogram is

that the number of pairs of points in large distance classes is often too small for valid

testing; to avoid this problem, only the spatial structure of the first two thirds of the

variogram was modeled (Legendre and Fortin, 1989).  All regressions were performed in

SigmaPlot (Version 4.0), and R2 was used to measure the goodness of fit of the model to

the data.  

6.2.5.  Determination of group differences

6.2.5.1.  Community structure

In addition to the geostatistical analyses, the data were also analyzed to determine

if any group differences existed between samples positioned along the elevation gradient.

Samples were divided into four groups (Figure 6.1), based on elevation, horizontal

position, and frequency of inundation.  The four groups were (1) sediment always

saturated, samples 1 – 16; (2) sediment frequently flooded, samples 17 – 26; (3) sediment

occasionally flooded, samples 27 – 31; and (4) sediment rarely flooded, 32 – 44.  A

Mantel test (Mantel, 1967; Sokal, 1979) was used to evaluate whether overall microbial

community structure was significantly different among the various groups.  In general, a

Mantel test determines the amount of correlation between two matrices, and a

permutation procedure is used to assess the significance of this correlation.  In this

application, the two matrices being compared were (1) the observed dissimilarity matrix

calculated from the RAPD data, and (2) a conceptual model matrix that defined group

identity.  Data were analyzed to test the null hypothesis that there was no difference in

within and between-group genetic similarities of the communities using the Mantel-Struct
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program (Miller, 1999).  A Monte Carlo procedure (with 5000 permutations) was then

used to control for the impact of spatial autocorrelation among the sampling locations and

to evaluate the significance of the group differences.

6.2.5.2.  Bacterial abundance (AODC)

A Mantel’s test was also used to compare bacterial abundance in the different

elevation groups.  First, a dissimilarity matrix was calculated by determining the absolute

value of the different between each sample pair, divided by the maximum difference for

all pairs.  This matrix, along with the group identity for each sample, was analyzed using

the Mantel-Struct program (Miller, 1999), as described above.  

6.3.  Results

6.3.1. Variogram analysis of spatial autocorrelation

Figure 6.2 shows the results of the geostatistical analyses for each parameter

(bacterial abundance and community structure) for each direction (horizontal and

vertical).  The data were fit with an exponential model, and the model output is presented

in Table 6.1.  In general, the model fit the data quite well (Table 6.1, Figure 6.2); R2

varied between 0.62 and 0.96, and all correlations were significant, with p < 0.005.  For

AODC, the spatial dependence (the proportion of variance in the data that was accounted

for by the spatial model) was quite high.  In the horizontal direction, the spatial model

could account for 73 % of the variance in microbial abundance; for the vertical direction,

60 % of the variation in bacterial abundance could be correlated with the spatial 
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Table 6.1.  Summary of model parameters obtained from fitting an exponential equation to the experimental variograms.

Parameter and direction Nugget
(C0)

Sill
(C=C0 + C1)

Nugget effect
(C0/C)

Spatial dependence
(C1/C) R2 Range

(cm)

Bacterial abundance (AODC):

Horizontal 0.019 0.071 0.27 0.73 0.76 113
Vertical 0.028 0.070 0.40 0.60 0.62 26

Community structure (RAPD):

Horizontal 0.631 0.810 0.78 0.22 0.96 35
Vertical 0.732 0.818 0.89 0.11 0.79 17

182
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separation of samples.  The range (the distance beyond which data exhibit no spatial

autocorrelation) was 26 cm in the vertical direction and 113 cm in the horizontal.  The sill

(the value of the variogram at distances beyond the range) was the same for both

directions.  

In geostatistics, anisotropy is said to be present in data when the autocorrelation

function is not the same for all geographic directions.  In the case of bacterial abundance,

the analyses produced the same sill for the two different directions, but different ranges;

this phenomenon is referred to as geometric anisotropy (Isaaks and Srivastava, 1989).  A

geometric anisotropy ratio can be calculated as the ratio of the larger range to the smaller

range; here that ratio is 4.3 (horizontal / vertical).  The means that, on average, the same

amount of variability occurred over 4 horizontal distance units as occurred in 1 vertical

distance unit.  It is interesting to note the similarity in this value compared with the aspect

ratio (horizontal distance / vertical distance = 4.3).

For similarity in community structure, spatial dependence was lower (horizontal:

22 %, vertical: 11 %), and most of the variation in community structure was not

accounted for simply by considering the spatial separation of the samples.  The range of

spatial extent for overall community structural similarity was smaller than was calculated

for bacterial abundance:  35 cm for the horizontal direction and 17 cm for the vertical.

As with bacterial abundance, the sills for the two directions were similar and a geometric

anisotropy ratio could be calculated.  In this case, the anisoptropy was 2 – smaller, but in

the same direction as for bacterial abundance (horizontal / vertical).
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6.3.2. Analysis of group differences

An analysis of group differences was performed to evaluate whether the different

flooding zones contained communities whose structure and abundance were significantly

different.  A Mantel test was performed, and a Monte Carlo procedure (using 5000

permutations) was employed to assess the significance of the test statistic.  A Bonferoni

type correction was used to adjust the α level, depending on the number of comparisons

made (Legendre and Fortin, 1989); a modified α level of 0.008 (α = 0.05 divided by 6

comparisons) was used.  

Overall, the sample groups were found to contain significantly different microbial

communities, as assayed by RAPD fingerprinting (p = 0.0002).  More specifically, group

4 (rarely flooded/high marsh) was found to differ from all of the other groups, and group

3 was significantly different from group 1 (Table 6.2).  

For microbial abundance, the average concentration of cells (× 1010 cells ml-1

sediment) was:  group 1 - 7.4, group 2 - 5.6, group 3 - 6.8, and group 4 - 7.8.  Overall,

these differences were significant (p = 0.03), with group 4 (rarely flooded/high marsh)

being most distinct (Table 6.2).  

6.4.  Discussion

The overall goal of this study was to quantify spatial autocorrelation among the

microbial communities residing in salt-marsh creek bank sediments. In particular, we

sought to determine the extent to which the spatial distribution of samples may contribute

to overall between-sample variability, and to estimate microbial community patch size.  
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Table 6.2.  Results (p values) from a series of Mantel tests comparing community properties
for the different elevation groups.

Bacterial Abundance Community structure
Elevation group

Group
1

Group
2

Group
3

Group
1

Group
2

Group
3

1 – Always saturated – –

2 – Freq. flooded 0.62 – 0.088 –

3 – Occasionally flooded 0.99 0.007* – 0.0008* 0.018 –

4 – Rarely flooded 0.003* 0.0008* 0.39 0.004* 0.0002* 0.0006*

* Significant comparisons, after α was adjusted to 0.008 (see text).
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In general, the results demonstrated that small-scale variability exits, both in terms of

total bacterial abundance (AODC) and in terms of community structure (RAPD DNA

fingerprinting results).  The “patch size” of the microbial communities found in these

sediments varied somewhat, depending on the parameter used to assay the organisms and

the way that the spatial separation of the sampling units was calculated; patch size

estimates ranged between approximately 10 and 100 cm.  These values are similar to

those obtained by other researchers, in other environments, as outlined in the

Introduction.

The correlation length scales for bacterial abundance (AODC) were larger than

the values obtained when considering community structure, for both directions (vertical:

113 cm vs. 35 cm; horizontal: 26 cm vs. 17 cm).  This finding suggests that the

environmental factors controlling these two community attributes may be different, and

may vary at different spatial scales in the environment.  Alternately, these results could

be due a single environmental parameter influencing the two microbial attributes

differently or to a different extent.  Simultaneous measurement of the distribution of

microbial communities and physicochemical properties (e.g., organic matter

concentration, sediment moisture content, or redox status) at small spatial scales would

add a great deal to our understanding of how environmental heterogeneity can influence

microbial community development, and, conversely, how microbial communities may

alter their microenvironment.  Unfortunately, the samples collected for this study were

too small to permit measurement of the microbial communities as well as any

physicochemical parameters.  
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Most of the studies of microbial community variability at small spatial scales have

considered more general properties (e.g., total abundance, biomass, or activity (Duarte

and Vaqué, 1992; Moran et al., 1987; Morris, 1999)), while relatively few studies have

examined the distribution of microbial community structure (Balser and Firestone, 1996;

Franklin et al., 1999b; Mackas, 1984; Saetre and Bååth, 2000).  Of those that have, the

range over which the communities are spatially autocorrelated is generally smaller than

the range established for more broad microbial community properties.  However, there

are very few studies that have compared these two aspects of the same community (Both

et al., 1992; Mackas, 1984).  Likewise, studies that have examined the distribution of

guilds (e.g., denitrifiers (Scala and Kerkhof, 2000)) or specific groups of organisms

(Cavigelli et al., 1995; Grundmann and Debouzie, 2000; Saetre and Bååth, 2000) in the

environment tend to find smaller correlation length scales compared to those studies that

assay for more general microbial parameters.  Part of this discrepancy may be due to the

fact that researchers whose specialization involves studying specific functions or

particular groups of organisms are more likely to conduct experiments at small spatial

scales, while researchers who study more general parameters often collect larger samples,

which can limit the resolution of a study.  

In this study, the spatial dependence (the percent of the total variance in the data

that can be explained by considering the spatial separation of the sampling units) was

much less for the analyses that considered community structure (horizontal: 22 %,

vertical: 11 %) than for the analyses that considered bacterial abundance (horizontal:

73%, vertical: 60 %).  Most of the variability in community structure must come from

variation at other scales, experimental error, or the influence of other environmental
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parameters.  The reproducibility of the RAPD procedure is sensitive to a number of

experimental factors (Davin-Regli et al., 1995; Meunier and Grimont, 1993), and

experimental error might partially explain the relatively large nugget effect observed in

the geostatistical analyses of the RAPD data.  However, recent work has shown the

repeatability of RAPD fingerprinting to be quite good with microbial community DNA

samples (Franklin et al., 1999a; Wikström et al., 1999), and it is unlikely that

methodological problems contributed significantly to the results presented here.  

Given the relatively small portion of the variance in community structure that was

spatially dependent, it seemed reasonable to analyze the RAPD data to see if there were

any differences between groups of samples located at different elevations (Figure 6.1).

Groups were defined based on vertical position and frequency of inundation, and roughly

correspond to four areas between low and high marsh.  The RAPD profiles obtained for

the group 4 samples (rarely flooded/high marsh) were significantly different from those

obtained in any of the other zones (Table 6.2).  Similarly, the communities inhabiting

group 3 (occasionally flooded) were significantly different from the group 1 (saturated

sediment/low marsh) communities.  For bacterial abundance (AODC), the group

differences were not as strong, though group 4 was, again, distinct from the other

samples.  The flooding regime along the creek bank could influence the microbial

communities in a number of ways.  Besides the direct effect of inundation on microbial

community structure (e.g., flooding could add or remove organism types), there are a

number of different environmental parameters (e.g., sediment moisture content, redox 
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status) that may covary in response to the patterns of water movement; further study

would be necessary to establish whether any of these parameters are important in

generating the community differences observed here. 

One of the main problems when working with samples that are spatially

autocorrelated is that the use of parametric statistical procedures for data analysis is not

appropriate.  As part of this study, we wanted to estimate the range of spatial influence of

microbial abundance within these sediments, and then to determine whether sampling

beyond this range provides a different estimate of mean bacterial concentration,

compared to sampling that was conducted at separation distances smaller than the

correlation length scale.  To test whether the estimate of abundance one would obtain by

sampling two spatially autocorrelated locations was significantly different from the value

one would obtain by sampling two locations that were spatially independent, we

calculated the average AODC between each pair of samples (to simulate several sampling

efforts), and then categorized each average as having been obtained using spatially

autocorrelated samples or as being spatially independent.  After sorting the averages into

these two groups, an ANOVA was used to determine whether the estimates of abundance

obtained using spatially autocorrelated samples were significantly different from that

obtained using pairs of independent samples.  Overall, the estimate of mean AODC was

significantly lower using spatially autocorrelated samples (6.9 × 1010 ± 4.2 × 108 (st.

error)) compared to spatially independent samples (7.6 × 1010 ± 5.8 × 108 (st. error))

(ANOVA results: d.f. = 945, F = 88.96, p < 0.0009).  This exercise demonstrates the

important impact spatial autocorrelation may have on a scientist’s estimate of mean

environmental properties in a given region or habitat.  
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Another major trend revealed in this analysis is the anisotropy associated with the

distribution of microorganisms in the sediments.  For both community parameters, the

patch size was always greater when horizontal separation was used as the distance

measure, compared to vertical separation.  Partly, this finding could be an artifact of the

sampling design – our sample density was much higher for X direction than for the Y

direction (44 samples / 50-cm vertical elevation, versus 44 samples / 215-cm horizontal

expanse).  The higher sampling density means that there was a smaller average separation

distance considering elevation (1.5 cm) compared to the horizontal direction (5 cm), and

this smaller separation distance increases the opportunity to detect smaller-scale

variability.  Since microbial communities are organized at a hierarchy of spatial scales, it

is possible that the sample design used here simply captured community variation at two

different levels.  It is also possible that there are different environmental parameters

influencing community development in the two directions, and that the processes more

correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale than

the processes controlled by distance from the creek bank.   It is important to note that,

throughout most of this discussion, the horizontal and vertical components of space have

been discussed as being independent, though they are not.  For example, one might

expect drainage and moisture content of two samples located the same distance from the

creek bank, but at different elevations, to be different.  

Within marsh ecosystems, microbial communities serve many critical functions,

including the decomposition of organic material and the biogeochemical cycling of

minerals and nutrients.  Researchers generally see a great deal of variation in microbial

community structure and processes, both within and between marshes.  Often times,
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biogeochemical process variation within visibly homogenous environments of a single

marsh is greater than among marsh variation (Frischer et al., 2000; Hackney and De La

Cruz, 1980; Hackney and De La Cruz, 1986; Hines et al., 1999).  The results presented

here suggest that community structure and microbial abundance can vary at small scales

(< 1 m) in these systems, and that this information needs to be incorporated into the

experimental design when sampling these habitats.  It is reasonable to expect the patch

size of the microbial community to vary in different environments, and some care must

be taken when trying to extrapolate the results of this work to other systems.  
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Chapter 7.

Multi-scale variation in spatial heterogeneity for microbial 
community structure in an eastern Virginia agricultural field.

Franklin, R. B. and A. L. Mills.  2003.  FEMS Microbial Ecology.  44:335-346.
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Abstract

To better understand the distribution of soil microbial communities at multiple spatial

scales, a survey was conducted to examine the spatial organization of community

structure in a wheat field in Eastern Virginia (USA).  Nearly 200 soil samples were

collected at a variety of separation distances ranging from 2.5 cm to 11 m.  Whole-

community DNA was extracted from each sample, and community structure was

compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting.

Relative similarity was calculated between each pair of samples and compared using

geostatistical variogram analysis to study autocorrelation as a function of separation

distance.  Spatial autocorrelation was found at scales ranging from 30 cm to more than 6

m, depending on the sampling extent considered.  In some locations, up to four different

correlation length scales were detected.  The presence of nested scales of variability

suggests that the environmental factors regulating the development of the communities in

this soil may operate at different scales.  Kriging was used to generate maps of the spatial

organization of communities across the plot, and the results demonstrated that bacterial

distributions can be highly structured, even within a habitat that appears relatively

homogeneous at the plot and field scale.  Different subsets of the microbial community

were distributed differently across the plot, and this is thought to be due to the variable

response of individual populations to spatial heterogeneity associated with soil properties.
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7.1.  Introduction

Microorganisms are not distributed uniformly in the environment, rather their

abundance and activity change along environmental gradients.  Even within a

homogeneous system, biological processes (e.g., growth or colony formation) may

produce aggregations of organisms at various spatial scales.  Soil systems are particularly

heterogeneous, and this heterogeneity arises as a result of the interaction of a hierarchical

series of interrelated variables that fluctuate at many different spatial and temporal scales.

The factors that affect microbial survival and community structure in soils are known to

be both biotic (e.g., predation and competition) and abiotic (e.g., temperature or pH).

Some of these processes are primarily important at microscopic scales (e.g., particle size

and pore space structure), whereas others act over larger distances (e.g., vegetation cover

and precipitation).  These soil properties do not vary independently; rather, the general

perception is that any such variable measured at a certain point in space and time is the

outcome of several physical, chemical, and biological processes, all of which are spatially

variable.

Given that environmental factors do not necessarily operate independently, or at

distinct spatial scales, studying microbial systems using a single analytical scale cannot

provide a complete understanding of community dynamics.  Multi-scale comparisons, in

which patterns are analyzed at several different spatial scales, may be more useful when

trying to identify the factors that control community development.  Conclusions about the

organization of microbial communities, the effect of disturbance, or the roles of various

limiting factors are likely to differ at different spatial scales (Wiens et al., 1986).

Moreover, the characterization of microbial communities at several different scales may
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help explain paradoxes that arise when different investigators, studying similar

communities but at different scales, arrive at different conclusions about the factors that

structure those communities.  These disagreements may reflect viewpoints of different

scales, and not differences in the way communities are organized (Rahel, 1990).  

Previous work studying spatial organization in soil microbial systems has

primarily focused on the distribution of individual cells (Dandurand et al., 1995; Fendorf

et al., 1997; Nunan et al., 2001; Nunan et al., 2002), specific types of organisms (Bending

et al., 2001; Both et al., 1992; Dandurand et al., 1997; Felske and Akkermans, 1998;

Grundmann and Debouzie, 2000), or collective parameters such as bacterial abundance or

total biomass (Franklin et al., 2002; Kuperman et al., 1998; Morris, 1999; Robertson et

al., 1997; Saetre, 1999; Smith et al., 1994).  There are fewer studies that have considered

variations in community structure (Acosta and Lynn, 2002; Cavigelli et al., 1995;

Franklin et al., 2002; Ranjard et al., 2000; Saetre and Bååth, 2000) or function/activity

(Gorres et al., 1998; Parkin et al., 1987; Robertson et al., 1988; Saetre, 1999).  In general,

these studies have concentrated on understanding spatial variability at a single analytical

scale, and have found significant spatial autocorrelation at a variety of separation

distances, ranging from µm to km, depending on the spatial extent studied.  Recently,

scientists have begun to focus on multi-scale comparisons, and have found evidence for

nested scales of spatial structure (Bruckner et al., 1999; Ettema and Wardle, 2002;

Robertson and Gross, 1994; Saetre and Bååth, 2000; Stenger et al., 2002).  For example,

Nunan et al. (2002) studied the spatial distribution of soil bacteria at three different

scales, ranging from µm to meters, and found that the distribution of individual bacterial

cells was organized at two scales in the subsoil, and at a single scale in the topsoil. 
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Studies conducted in agricultural and shrub-steppe ecosystems suggest that microbial

biomass and activity may be spatially dependent at scales less than 1 m, nested within a

larger scale related to variations at the landscape level (Robertson et al., 1997; Ronimus

et al., 1997; Smith et al., 1994).  The presence of nested scales of variation suggest that

the various factors regulating the development of microbial communities in the soil

ecosystems may operate at different scales (Robertson and Gross, 1994), and a

simultaneous analysis of the multi-scale spatial variability of microbial community

structure and soil microenvironment could help identify these factors and determine their

relative influence.  

The present study was designed to address the general need for increased research

into multi-scale patterns of spatial organization in soil systems.  In particular, the research

focused on quantifying the spatial patterns associated with microbial community structure

at the cm to meter scale using geostatistical techniques.  Nested levels of spatial

autocorrelation were observed (ranging from 30 cm to more than 6 m), and, in some

locations, up to four distinct ranges of spatial influence were quantified.  

7.2.  Materials and methods

7.2.1.  Site description and sample collection

Soil samples were collected from an agricultural field on the eastern shore of

Virginia (USA) in May 2000 (37° 17.62´N, 75º 55.53´W).  The field was planted with

durum wheat (Triticum turgidum), and the crop was approximately 75 days old on the

day of sampling.  Samples were collected with separation distances ranging from 2.5 cm

to 11 m, using the sampling scheme detailed below.  At each sampling location, the loose
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layer of surface material was removed, and a small hole (1.5 cm diameter) was dug to

collect 5 – 10 grams of soil.  The samples were placed on ice for transport to the lab,

where they were sifted (approximately 750-µm mesh size), to remove gravel, plant, and

root material, and stored at -80°C.

7.2.2.  Sampling scheme

The basic sampling design was a square with 7.1 m edges and 10 m diagonals

(Figure 7.1).  Samples were collected at regular intervals around the perimeter of the

block (1.8 m separation distance), and at 1 m intervals along the diagonals.  At each node

(A, B, C, D, and X), more concentrated sampling efforts were employed.

Nested within the original sampling grid, a second set of samples were collected

at 10-cm increments in a cross shape surrounding each node.  Five samples were

collected in each direction - north, south, east, and west - from the center node.  Nested

within this area, a third set of samples was collected at 2.5-cm increments around each

node, following the same pattern (2.5, 5.0, 7.5, and 10 cm in each direction).  A total of

193 soil samples were collected, 33 at each node and 28 at larger separation distances.

7.2.3.  DNA extraction and quantification

Whole-community DNA was extracted from 0.25-gram subsamples of soil with

the MoBio Soil DNA isolation kit (Solana Beach, CA) using the alternative heat shock

lysis procedure described in the kit documentation.  Purified DNA was resuspended in 10

mM Tris buffer and stored at –20°C.  The concentration of DNA in each sample was

determined using the PicoGreen reagent (Molecular Probes, Eugene, OR).  
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Figure 7.1.  Map of the sampling scheme.  (A) The sampling area was a 50 m2 square
(diamond) with 10-m diagonals.  Around the perimeter of the square, samples were
collected at 1.8 m increments, and at 1 m increments along the diagonals.  At each node
(A – X), more concentrated sampling efforts were employed using a nested sampling
pattern.  Node A is presented in the figure as an example.  Additional samples were
collected at 10 cm increments (B) and 2.5 cm increments (C) in a cross shape
surrounding each node
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7.2.4.  AFLP

Amplified fragment length polymorphism (AFLP) analysis was performed using

the Perkin Elmer Microbial Fingerprinting Kit (PE Applied Biosystems, Foster City,

CA).  For community analysis, the manufacturer’s instructions for analysis of individual

bacterial strains were modified as described below.  For details regarding the primer and

adaptor sequences, and an explanation of primer selection criteria, readers should consult

the kit documentation.  

With AFLP, a restriction digest is performed on a DNA sample (similar to RFLP),

and then a set of primer-recognition sequences (adaptors) is used to amplify the

restriction fragments using PCR (Zabeau and Vos, 1993).  The primers and restriction

enzymes used are not specific for a gene or group of genes, but can, theoretically, interact

in numerous random places throughout a genome.  AFLP is very similar in premise and

application to RAPD fingerprinting, which has been used a number of times to compare

microbial community structure (Franklin et al., 1999 a & b; Wikström et al., 1999; Xia et

al., 1995); the specific use of AFLP for community analysis is discussed in Franklin et al.

(2001)

7.2.4.1.  Restriction / ligation procedure and preselective amplification

The restriction and ligation steps of the AFLP reaction were performed

simultaneously by adding 10 ng of DNA, 2 units of MseI, 4 units of EcoRI, and 10 units

of T4 DNA ligase (enzymes purchased from New England Biolabs, Beverly, MA) to a

reaction mixture containing: 1X T4 DNA ligase buffer (50 mM Tris-HCl, 10 mM MgCl2,

10 mM dithiothreitol, 1 mM ATP, and 25 µg ml-1 bovine serum albumin (NEB, Beverly,
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MA)), 0.05 M NaCl, 0.5 µg BSA, 0.2 µM EcoRI adaptor, and 2 µM MseI adaptor (PE

Applied Biosystems); the total reaction volume was 11 µl.  The reactions were incubated

for 6 hrs at 37°C, and then diluted by adding 189 µl of TE0.1 buffer (20 mM Tris-HCl, 0.1

mM EDTA, pH 8.0).

Preselective amplification was performed following the manufacturer’s protocol,

though the PCR mixture was supplemented with 400 µg ml-1 BSA.  Successful

amplification was verified by agarose gel electrophoresis of 10 µl of PCR product in a

1.5 % agarose gel.  The remaining product from the preselctive amplification (10 µl) was

then diluted with 190 µl TE0.1 buffer.

7.2.4.2.  Selective amplification

For the selective amplification, several different combinations of primers were

tested; in each case, one EcoRI primer, labeled with a fluorescent dye, was paired with

one MseI primer.  However, the AFLP patterns obtained using the bacterial primer pairs

were too complex, and primers from the AFLP Plant Mapping Kit (PE Applied

Biosystems) were also tested.  These primers were identical to those designed for the

bacterial samples, but contained an additional selective nucleotide at the 3’ end of the

primer.  After screening several pairs of primers, two sets were selected for use in this

study; the selection was based on the number and intensity of the peaks in the final AFLP

fingerprint, as well as the reproducibility of these fingerprints.  The primer pairs used

were: EcoRI-ACA (FAM labeled) with MseI-CAA, and EcoRI-AAC (NED labeled) with

MseI-CTC.  
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Selective amplification was performed as directed in the kit documentation, with

two modifications.  First, the reaction volume was doubled (20 µl total), and, secondly,

the PCR reaction mixture was supplemented with 800 µg ml-1 BSA.  Successful

amplification was confirmed by agarose gel electrophoresis (8 µl of PCR product, 1.5%

agarose gel).  The remaining PCR product was then purified using the QIAquick PCR

Purification kit (Qiagen, Valencia, CA).  To elute DNA from the QIAquick column, 20

µl of elution buffer were added to the center of the membrane, allowed to stand for 1 min,

and then centrifuged for 1 min at 13,000 rpm in a tabletop microcentrifuge.

7.2.4.3.  Electrophoresis and data collection

After purification, the selective amplification products were resolved using an

ABI Prism 310 Genetic Analyzer.  For the FAM-labeled products, 10 µl of PCR product

were mixed with 1 µl of size standard (GeneScan 500 ROX, PE Applied Biosystems) and

14 µl of deionized formamide.  For the NED-labeled products, 1.5 µl of PCR product

were mixed with 1 µl of the size standard and 22.5 µl of deionized formamide.  These

mixtures were denatured by heating to 95°C for 5 min, and then quick-chilled on ice.

The samples were analyzed with the following electrophoresis parameters: 10-sec

injection time, 15-kV injection voltage, 13-kV run voltage, and 30 min run time.

The electropherograms of the AFLP products were analyzed using the Genotyper

software (PE Applied Biosystems), and the presence or absence of each peak in each

sample was coded as 1 or 0.  The data from the two primer pairs were pooled into a single 
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large dataset for all further analyses.  Collectively, these primers produced a total of 331

bands, and an individual sample contained between 20 and 210 bands.  The average

number of bands observed for an individual sample was 88.

The Jaccard coefficient was used to calculate the relative similarity between each

set of samples, based on the proportion of positive bands shared by a sample pair (Sneath

and Sokal, 1973).  The similarity matrix was then converted into a dissimilarity matrix by

subtracting each value from 1.  The dissimilarity matrix represents the relative difference

in microbial community genetic structure between each pair of soil samples.

7.2.5.  Geostatistical analyses

In most geostatistical analyses, a variance term (usually semi-variance) is

calculated between each pair of samples and graphed versus spatial separation to produce

a variogram.  When the overall spatial structure of multivariate dataset is of interest,

researchers may generate plots using a ‘resemblance coefficient’ for the Y-axis (e.g., a

similarity or dissimilarity matrix (Franklin et al., 2002; Mackas, 1984; Underwood and

Chapman, 1998)) or information derived from a principal components analysis

(Kuzyakova et al., 2001; Saetre, 1999; Saetre and Bååth, 2000; Sokal et al., 1980), rather

than a conventional variance estimate.  Since the AFLP analyses generated multivariate

binary data, it was not possible to calculate semi-variance between sample pairs; instead,

pseudo-variograms were created using the “relative dissimilarity” values calculated from

the Jaccard similarity matrix.  These pseudo-variograms were constructed and analyzed

using the same techniques as traditional variograms.
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7.2.5.1.  Analytical approach

An analytical approach was developed to explore two distinct aspects of spatial

variability in these soil microbial communities.  First, the overall spatial autocorrelation

structure was analyzed in order to quantify the relationship between community

variability and spatial separation (lag distance).  Data from all sampling locations were

included to provide an average portrait of the spatial relationships in the plot.  This

system was analyzed multiple times, changing the size of the observational window, to

study this relationship at different spatial scales.  The second portion of the analysis was

directed toward trying to understand any changes in spatial pattern and community

organization associated with different locations in the field.  

For the first set of analyses, data from all of the sampling locations were analyzed

to obtain a portrait of the average spatial relationships in this plot.  Subsets of this data,

varying in maximum separation distance, were also analyzed to quantify autocorrelation

at different spatial scales.  These scales were named based on relative size, and the

following designations were used:  plot scale (all sampling locations), large scale

(separation distances up to 5 m), small scale (up to 1 m), and fine scale (up to 0.4 m).  For

each of these different sample groupings, geostatistical analyses of the overall difference

in community structure were performed. 

For the second set of analyses, local spatial autocorrelation was quantified by

analyzing samples from different sections of the plot.  These results were used to help

understand whether the spatial autocorrelation structure was different in different areas of

the field.  An analysis of each scale was performed at each of the five different nodes (A 
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– X (Figure 7.1)):  large scale (all samples located within a 2.5 m radius surround each

node (maximum separation distance of 5 m)), small scale (all samples located within a

0.5 m radius), and fine scale (all samples located within a 0.2 m radius).  

Lastly, in order to determine whether the pattern of spatial variability changed

with direction in the field (anisotropy), the data were also grouped into two additional

categories.  The “North-south” (N/S) analysis included all of the samples collected along

the axis between nodes B and D, and the “East-west” (E/W) analysis included all of those

points along the line between nodes A and C.

7.2.5.2.  Guidelines used in variogram construction

Prior to constructing each variogram, it was first necessary to segregate the data

into distance classes by calculating the appropriate number of bins and the appropriate

bin width (lag distance).   The purpose of “binning” the data was to obtain the maximum

resolution (the most detail) at small distances, without being misled by structural artifacts

resulting from whatever particular size class was chosen.  This approach allowed us to

quantify the dominant spatial pattern at each scale, but obscured the autocorrelation

structure at smaller distances.  For each analysis, lag distance was calculated by

considering the maximum separation distance between sample pairs, as discussed in

Franklin et al. (2002).  Several variograms were then produced and modeled, for a range

of different lag distances surrounding this initial estimate, and the results with the best fit

(highest R2), the most reasonable parameter estimates, and the maximum detail are

presented here.  
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One problem with using equal distance classes to construct a variogram is that the

number of points in some bins may be quite small (especially bins at the far right of the

variogram), so the average associated with one of these classes may not be a valid

estimate of the mean at that distance.  To help avoid this problem, all bins that contained

fewer than 1 % of the total number of points (pairwise comparisons) in each analysis

were removed from the experimental variograms prior to statistical modeling.  

7.2.5.3.  Modeling the experimental variograms

In general, variograms may take one of three different forms: nugget (sometimes

called “nugget effect”), linear, and linear-sill.  A variogram that is categorized with a

nugget model is flat, indicating a lack of spatial structure in the data at the scales

measured.  A variogram that displays a linear pattern represents a system where samples

are autocorrelated at all of the separation distances measured, and may be modeled with a

linear equation: y = C0 + bx, where y is the variance term (in this case, dissimilarity in

genetic community structure), x is the spatial separation distance, C0 is the y-intercept,

and b is the slope of the variogram model.  Most of the time, these variograms do not

pass though the origin of the graph, but display some variability even at separation

distances of zero; this value, C0, is also referred to as “nugget” because it represents the

variability in the data that cannot be modeled using the spatial autocorrelation function.

This phenomenon may occur because of random sampling variance, experimental error,

or variability at other spatial scales.  
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A linear-sill model is a general term used to describe variograms that display

increasing variance with increasing separation (conceptually similar to the linear model),

and then level off at a sill.  In our study, all variograms displaying this pattern were

modeling using the exponential equation:

)]3exp(1[10 a
xCCy −−+=

where y is the variance term, and x is the spatial separation distance.  C0 is a parameter

quantifying the nugget effect (the amount of variability at distance = 0), C1 is a spatially

structured component of the model, and a is the range (the distance beyond which

variance is no longer a function of spatial separation).  The range is sometimes referred to

as the correlation length scale (CLS).  In the exponential model, the (semi)-variogram

approaches its maximum asymptotically, and the range is therefore defined as the

distance where the (semi)-variance equals 95% of the sill.  The sill (C) is the y value at

which the variogram levels off, and can be calculated as: C = C0 + C1.  The ratio of the

spatially structured component of the model to the total variability captured by the model

(C1/C) represents the proportion of variability in the dataset that was modeled by the

autocorrelation structure function, and is commonly referred to as spatial dependence.

This value approaches 1 in a strongly spatially structured system, and 0 when no spatial

structure is detected with the sampling scale used.    

Each of the experimental variograms was modeled using either a linear or an

exponential equation.  All regressions were performed in SigmaPlot (Version 5.0) and R2

was used to measure the fit of the model to the data; p values less than 0.05 were

considered statistically significant.  From the model, C0, C1, and a were estimated, and
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the sill (C) and spatial dependence (C1/C) were calculated.  Situations in which a linear or

exponential model could not be successfully applied (p > 0.05) were categorized as

“nugget.”  

7.2.5.4.  Kriging

Kriging is a family of generalized least-squares regression algorithms that may be

used to estimate the values of a given parameter at unsampled locations, by considering

the spatial autocorrelation structure of the variable as determined for the sampled

locations.  In the variogram analyses discussed above, we used the similarity matrix to

describe the overall relationship between samples, and determined the autocorrelation

associated with variation in the composition of the entire community.  However, it was

not possible for us to generate maps using the similarity matrix (we cannot plot paired

values across all locations) or to use the original data matrix (1’s and 0’s) in the kriging.

Instead, a principal components analysis (PCA) was performed on the original data in

order to generate numerical values describing community structure at each sampling

location.  The first three principal components (PCs) were used in the kriging, and each

describes a portion of the variability in a microbial community structure.  

A separate geostatistical semi-variogram analysis was performed on each of the

first three principal components to quantitatively describe the spatial autocorrelation

structure for each PC.  This information was used in the kriging to generate maps of the

PC scores with the SADA statistical package (Spatial Analysis and Decision Assistance,

Version 3.0.80, University of Tennessee).  This approach was also used to generate maps

of microbial community structure along each of the main axes of the sampling grid (N/S
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and E/W, as analyzed in the directional analysis).  In this case, maps were only produced

for the first principal component.

7.3.  Results

7.3.1.  Quantifying multiple scales of spatial autocorrelation within the plot

In the first set of analyses, data from all of the sampling locations were considered

in order to obtained an average portrait of the spatial relationships in the plot (Figure 7.2).

For the plot-scale analysis, a bin size of 0.5 m was used, and the number of points

included in each bin varied from a minimum of approximately 100, for very large

separation distances (> 10.5 m), to more than 3000 points for intermediate separation

distances.  On average, each point on the variogram is the mean of approximately 800

pairwise comparisons.  The points on the variogram that were averages of a small number

of comparisons (< 1 %) were excluded from the graph and the geostatistical modeling.  A

similar approach was used for the large (Figure 7.2 B), small (Figure 7.2 C), and fine

scale analyses (Figure 7.2 D), where 8288, 2860, and 1670 pairwise comparisons were

used, respectively.  

Significant spatial autocorrelation was detected at each analytical scale (Table

7.1), and could be modeled using either the exponential (plot and large scale) or linear

equations (small and fine scale).  The plot-scale analysis showed that the overall spatial

pattern was organized with a range of 6.3 m at this site, and the large-scale analysis

showed another level of organization with a range of 2.0 m.  The small and fine-scale

analyses displayed spatial autocorrelation, but range estimates could not be made because

a sill was not reached within either analytical extent.  
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Figure 7.2.  Variograms used to model the overall spatial autocorrelation structure at
each analytical scale.  Data from all of the sampling locations were included to obtain an
average portrait of the spatial relationships in the plot.  (A) Plot scale, all sampling
locations.  (B) Large scale, separation distances less than 5 m.  (C) Small scale,
separation distances less than 1 m.  (D) Fine scale, separation distances less than 0.4 m.
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Table 7.1.  Summary of results from geostatistical analyses of community structural similarity (AFLP profiles).

Scale and extent Node Model type R2 p Nugget Sill Spatial
dependence

Range
(m)

Plot (0.025 – 11 m) Entire plot Exponential 0.67 0.001 0.68 0.80 0.14 6.3

Large (0.025 – 5 m) Entire plot Exponential 0.70 < 0.0001 0.66 0.78 0.15 2.0
A Nugget 0.72
B Exponential 0.74 0.002 0.67 0.80 0.16 1.3
C Exponential 0.93 < 0.0001 0.63 0.76 0.17 3.3
D Exponential 0.93 < 0.0001 0.65 0.83 0.21 1.9
X Exponential 0.96 0.002 0.56 0.82 0.32 1.8

Small (0.025 – 1 m) Entire plot Linear 0.83 < 0.0001 0.66 > 1.0
A Nugget 0.73
B Exponential 0.92 0.006 0.66 0.76 0.12 0.6
C Exponential 0.63 0.03 0.60 0.70 0.15 0.6
D Nugget 0.73
X Nugget 0.65

Fine (0.025 – 0.4 m) Entire plot Linear 0.52 0.0034 0.67 > 0.4
A Nugget 0.73
B Exponential 0.50 0.03 0.66 0.72 0.09 0.3
C Linear 0.76 0.01 0.61 > 0.4
D Linear 0.65 0.05 0.72 > 0.4
X Linear 0.45 0.009 0.6 > 0.4

210
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Because of the techniques and conventions used to construct these variograms, the

smaller-scale autocorrelation structure of these communities was usually not visible in

the variograms constructed for larger spatial extents.  For example, in the plot-scale

analysis, the data were binned with a lag distance of 0.5 m; this action made it impossible

to detect the autocorrelation structure at the fine (≤ 0.4 m) and small scales (≤ 1 m).

Similarly, the resolution associated with this bin size was not sufficient to allow us to

accurately model spatial autocorrelation at the large scale (≤ 5 m). In order to study the

autocorrelation structure at these other spatial scales, only the relevant sections of the

variogram were considered.  It is generally acceptable to analyze subsets of a variogram

in this way, so long as there are enough data.  A geostatistical “rule of thumb” suggests

that each distance class should contain at least 30 pairs of points; however, the greater the

number of points, the greater the statistical reliability (Rossi et al., 1992).  This guideline

was far exceeded in all analyses, except the fine-scale analysis for the individual nodes.  

7.3.2.  Comparing spatial autocorrelation in different regions of the field

When the data from the different regions of the plot were analyzed separately,

using each node (A – X) as a center point, other CLS were detected (Table 7.1).  For each

scale and each sampling location, variograms were constructed using either 741, 528, or

210 pairwise comparisons (per node) for the large, small, and fine-scale analyses,

respectively.  In general, each dataset displayed an obvious linear or linear-sill pattern,

and the appropriate model was applied.  However, in a few cases, when visual

interpretation of the data was unclear, it was necessary to fit the variogram with both a
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linear and an exponential equation, and use statistical criteria (R2 and p value) to

determine the most appropriate model.  

For any given scale of analysis, the results for the different nodes were usually

similar (Table 7.1).  At the large scale, spatial autocorrelation was modeled at 4 of the 5

nodes, using an exponential equation; range estimates varied between 1.3 and 3.3 m, and

the average of the different estimates was 2.0 m.  For the small scale, significant models

of spatial autocorrelation were only determined at two of the nodes, which produced

identical range estimates of 0.6 m.  At the fine scale, the exponential model was applied

to node B, and the range estimate was 0.3 m.  At nodes C, D, and X, a linear model was

appropriate, and indicated that the communities are spatially autocorrelated with a range

greater that 0.4 m, which was the maximum separation distance used at that level of

analysis.  

In general, the results for the different sampling locations (nodes) were similar,

though each node displayed a unique multi-scale pattern of organization (Table 7.1).  The

same patterns of spatial organization were found at nodes D and X (identical CLS for

each scale), and the patterns observed at nodes B and C were very similar.  At node A,

spatial autocorrelation was not detected for any of the analytical scales.  

7.3.3.  Directional variograms

In order to determine whether the pattern of spatial variability changed with direction in

the field, the data were also analyzed along each axis of the sampling grid.  For the E/W

transect, the variogram could be modeled using a linear equation (Table 7.2, Figure 7.3

B).  For the N/S transect, multiple scales of spatial autocorrelation were 
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Table 7.2. Summary of results of the geostatistical analyses of the directional variograms.

Direction Portion
modeled

Model
type R2 P Nugget Sill Spatial

dependence
Range

(m)

North-southa

Section 1 0 – 4 meters Exponential 0.92 < 0.0001 0.65 0.84 0.23 1.8
Section 2 5 – 11 meters Exponential 0.64 0.01 0.68 0.84 0.18 1.8

East-west b
Entire length 0 – 11 meters Linear 0.72 < 0.0001 0.69 - - > 11.0

a  North/south refers to all points along the line from node B to node D.  
b  East/west west refers to all points along the line from node A to node C.  

213
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Figure 7.3.  “Directional variograms” used to model the overall spatial
autocorrelation structure along each axis of the sampling grid.
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observed within a single variogram (Figure 7.3 A); the variogram was divided into two

regions, which were analyzed separately to estimate the range and spatial dependence

using an exponential model (Table 7.2).  A repeating pattern was evident, and each of the

patches had a CLS of 1.8 m beyond the minimum (nugget) value.  The nugget (section 1:

0.65, section 2: 0.68) and sill values (both are 0.84) for the two patches were identical,

suggesting that the same amount of total variability was associated with each patch.  

7.3.4.  Kriging

Kriging was used to generate maps of the spatial distribution of microbial

community structure for the entire plot (Figure 7.4), and for each axis in the directional

analyses (Figure 7.5).  First, the AFLP profiles were analyzed using PCA, and the sample

scores from the first three principal components were used as derived variables in the

geostatistical modeling (results not shown).  Three separate maps were generated at the

plot scale, one based on each PC.  Together, these components explained 26.4 % of the

variance in microbial community structure (PC1:  12.6 %, PC2:  8.3 %, PC3:  5.5 %).

For each directional analysis, an additional PCA was performed using data from only the

respective sampling locations.  The first PC from each analysis was then used to generate

a map of microbial community structure along each axis using ordinary kriging.  The first

PC explained 18% of the variance among the samples located along the N/S axis, and

15% of the variance among the samples located along the E/W axis. 
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Figure 7.4.  Kriged maps showing the distribution of microbial community structure, as
described by the first three principal components, across the plot.  Each graph is oriented
to match Figure 7.1A; sampling nodes are indicated with ‘+’, and perimeter and diagonal
sampling locations are marked with ‘•’.  
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Figure 7.5.  Kriged maps showing the distribution of microbial community structure, as
described by the first principal component, for each directional analysis.
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7.4.  Discussion

In order to more fully characterize the spatial variability of microbial systems,

studies that make use of several different scales of measurement are necessary.  In this

research, multi-scale analysis of the spatial distribution of a soil microbial community

revealed several different scales of organization, ranging from 30 cm to more than 6 m.

In some locations, it was possible to identify and quantify up to four different CLS.  The

patch size estimates varied some at the different sampling locations across the plot

(different nodes) indicating that the patterns of spatial organization at a particular level

(spatial scale) are not necessarily fixed across this system.

When the multi-scale approach was applied to analyze the entire plot, two distinct

scales of organization were detected (large scale: 2.0 m, plot scale: 6.3 m).  Multiple

scales of spatial organization were also visible on the kriged maps, and each map showed

a different spatial pattern (Figure 7.4).  The PCA used in the construction of these maps

reduced the complex AFLP fingerprints into a set of derived variables, each of which

explains a portion of the pattern present in the AFLP data.  In this way, each PC describes

a different aspect of the variability among the microbial communities, and the kriging

results indicate that those distinct aspects have different patterns of spatial organization.  

These distinct patterns may develop as separate populations or groups of organisms

respond to the spatial distribution of different environmental variables.

The map generated for the first PC shows a patchy structure organized around the

center of the plot (node X).  The patch in the center of the plot has a diameter of

approximately 1.5 – 2 m, the CLS detected in the large-scale variogram analysis, and the

next surrounding ring has a diameter of 5 – 6 meters, which corresponds well to the CLS
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detected at the plot-scale.  One possible explanation for this bull’s-eye pattern is that

some aspect of the environment at the center of the plot is unique (e.g., a different

vegetation patch, a hill or mound, or a large application of fertilizer), and the map shows

the variation in community structure along a gradient away from this aberration.  In

contrast, the maps generated from the second and third PCs reveal a very different spatial

pattern.  The portion of the communities represented on these maps may be responding to

a suite of variables that are spatially structured as a gradient extending from the NE

corner to the SW corner of the plot.  

In addition to quantifying the overall pattern of spatial organization in this system,

our study was designed to evaluate how variable the autocorrelation structure was in

different locations.  In general, the results for the different sampling locations (nodes)

were similar and multiple CLS were detected, though spatial autocorrelation was not

detected at node A.  The samples collected at this location contained an unusually large

amount of plant and root material, which should have been removed by sieving, but could

have contaminated the DNA extracts.  However, given that the AFLP profiles for node A

were not significantly different from those obtained at other locations, we feel this is

unlikely.  Instead, these results may be correlated with some environmental heterogeneity

that altered the spatial organization, but not the overall composition, of the communities

in this region of the field.

Spatial dependence is the percent of total model variance that is explained by the

spatial autocorrelation function.  When this value is low (all variance is nugget), it

indicates that most of the spatial dependence occurs at distances greater or smaller than 
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the scale of study, or that the measurement error associated with the analysis is high

(Isaaks and Srivastava, 1989).  In the present study, the spatial dependence for any single

location (node) or particular analytical scale ranged from 0.09 to 0.32.  These values are

consistent with other studies considering community structure (Cavigelli et al., 1995;

Franklin et al., 2002).  For example, when Saetre and Bååth (2000) performed a

geostatistical analysis of the overall microbial community structure in a forest soil (using

PLFA), the spatial dependence varied between 0.12 and 0.25 for an analytical scale of 0.2

to 20 m.  The values discussed above refer to the spatial dependence for the analysis of a

single spatial scale.  However, if the spatial dependence in the present study is summed

across each of the four analytical scales (either for each node, or for the entire plot), the

total estimate increases to between 0.35 and 0.45.  

Communities at this site are expected to display additional spatial structure at

scales larger than the maximum separation distance used (11 m) and at distances smaller

than the minimum sampling interval (2.5 cm).  In this study, it would have been useful to

analyze multiple subsamples from each field sample to determine the variability within a

sampling unit.  This would have provided additional information regarding community

variability at small spatial scales, and would have functionally represented a separation

distance of zero.  Unfortunately, increasing the number of analyses was not feasible for

this study.  Recently, Ellingsøe and Johnsen (2002) considered the influence of soil

sample size on the analysis of bacterial community structure (using DGGE), and found

that sample size did influence their assessment of community structure for smaller sample

sizes (0.01 and 0.1 g of soil), but less so for larger sample sizes (1.0 and 10.0 g).  In our 
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study, each DNA extraction was performed on a single 0.25 g subsample, which may not

have been sufficient to completely categorize the community variability of each field

sample (5 – 10 g).

In the directional analyses, the variograms (Figure 7.3) matched up very well with

the kriged maps generated from the PC scores (Figure 7.5).  In the E/W variogram, a

linear pattern was observed; communities that were near-by along this axis were more

similar to one another than they were to communities at greater separation distances,

though all samples along the transect were spatially autocorrelated.  On the map,

patches/communities that are nearby have similar PC scores (more similar grayscale

values), but there is very little repetition of an individual community “type.”  There is a

general gradient along the axis that corresponds to the gradient observed in the maps for

the entire plot (Figure 7.4), and it is likely that the same environmental factors are

responsible for this pattern in both situations.  

Along the N/S axis, two types of communities dominate on the map of

community structure (Figure 7.5).  The patch size for these communities is about 2 m,

which is the CLS calculated from the nested variogram (Figure 7.3).  It is important to

note that, though the kriged map shows only two dominate communities, with PC scores

ranging from –1.5 to – 0.5, a frequency histogram of the entire set of PC scores showed a

normal distribution with values ranging from – 1.5 to 2.5 (results not presented).  The

presence of a regular and repeating spatial pattern along this axis suggests that the

microbial communities may be partially structured in response to some agricultural or

land management activity that occurs in at fixed intervals in the field.  For example, it has

been suggested that spatial structure may exist in agricultural soils in association with
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crop rows and aisles (Ettema and Wardle, 2002; Robertson et al., 1997; Stoyan et al.,

2000), and compaction due to wheel traffic may impact microbial activity (Parkin, 1993);

however, the CLS of 2 m is likely too large to correspond with these particular features.  

Often, when scientists research and discuss the existence of multiple scales of

spatial organization in microbial systems, they are referring to the presence of patterns

over a very wide range.  For example, Parkin (1993) discussed four main scales of

interest: microscale, plot scale, field or landscape scale, and regional scale, and Ettema

and Wardle (2002) primarily focused their recent review on the distribution of soil

properties and biota in distance classes of tens to hundreds of meters, cm to meters, and at

microscopic scales.  The research presented here demonstrates that a single variable can

manifest an incredible amount of spatial structure, at multiple scales, within these broad

classifications.  For example, at node B, four different CLS were detected: 30 cm, 60 cm,

1.3 m, and 6.3 m.  This is a remarkable degree of spatial variability for a pedological

homogeneous site that has been plowed and cropped as a single field for several years.

Variability such as this is likely to exist in most ecosystems, and should be considered

when making inferences about ecological relationships and when developing sampling

strategies for the environment (Robertson et al., 1997).

While many ecological theories and models acknowledge that elements that are

close to one another in space or time are more likely to be influenced by the same

generating processes, the classical statistical procedures employed to analyze these

phenomena assume an independence of observations.  Violations of the assumption of

independence and inappropriate application of these statistical procedures to spatially

autocorrelated data may lead to incorrect conclusions (Dutilleul, 1993; Legendre and
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Legendre, 1998; Murray, 2001).  For example, Franklin et al. (2002) found that estimates

of microbial abundance obtained using spatially autocorrelated data were significantly

different from those obtained using independent samples.  The varying degrees of

autocorrelation shown in the present study emphasize that sampling approaches and

experimental designs may need to consider the impact of spatial autocorrelation,

depending on the ecological question of interest.  Because it is not always feasible to first

do an extensive reconnaissance survey, and because the results presented here suggest

that one is not likely to avoid the impact of spatial autocorrelation, a possible solution is

to include spatial separation as a part of routine data collection.  An initial analysis of this

information can then be used to determine the influence of spatial autocorrelation on the

dataset.  If significant spatial structure is found, this information must be considered as a

variable and incorporated into the subsequent data analysis; if not, traditional parametric

statistical techniques may be appropriate.  

Most of the previous work examining spatial variability in agricultural systems

has been performed by soil scientists who were interested in understanding the

distribution of physical and chemical properties in order to assess soil quality or

determine the impact of land management practices (Castrignanò et al., 2000;

Dobermann et al., 1995; Robertson et al., 1997; Savin et al., 2001; Stenger et al., 2002).

These studies have shown that spatial autocorrelation is a common feature of such

systems.  The spatial variability associated with microbial communities is less frequently

studied (Robertson et al., 1988; Robertson et al., 1997; Savin et al., 2001), and, in

general, efforts to link agricultural soil properties and microbiological properties have

been unsuccessful.  To our knowledge, the work presented here is one of the first studies
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of spatial organization of community structure in this type of environment, and is unique

in its consideration of multiple scales of autocorrelation.  The results indicate that

microbial communities may have several nested levels of organization, even within the

cm to meter scale analysis.  Different subsets of the community were distributed

differently across the plot, and this is thought to be due to the variable response of

individual populations to the spatial heterogeneity associated with different soil

properties (or groups of properties).  Future studies that focus on comparing the spatial

structure of microbial communities with that of environmental properties may yield new

insights into how communities develop in soil systems, and what factors may be

important in maintaining and regulating soil ecosystem function.
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Chapter 8. 
 

 
The role of spatial variability in analysis of microbial community patterns:  

using multi-scale analysis to compare community structure and  
soil environmental properties in an agricultural field 
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Abstract  

In an effort to better understand the factors that influence microbial community 

organization at various spatial scales in soils, the distribution patterns associated with 

several microbial community and soil physical-chemical properties were compared for an 

agricultural wheat field.  Soil samples were collected with separation distances ranging 

from 2.5 cm to 11 m, and the multi-scale spatial distributions of soil carbon (C), nitrogen 

(N), organic matter (OM), texture (sand, silt, and clay content), and bacterial abundance 

were studied and compared with previously published analyses of microbial community 

structure (Franklin and Mills, 2003, FEMS Microbiol. Ecol. 44:335-346).  Geostatistics 

demonstrated the presence of spatial autocorrelation for all of the microbial and 

environmental variables, and kriging was used to generate maps of the spatial distribution 

of each parameter.  The maps of soil texture displayed a large-scale gradient pattern 

across the sampling plot, while those for C and N showed a more patchy structure, with 

multiple levels of autocorrelation, nested within this larger-scale gradient.  These patterns 

were quite similar to those previously observed for community structure.   Simple causal 

modeling using Mantel and partial Mantel tests was used to study the direct relationship 

between each environmental property and each microbial community property, and the 

results indicate that there is a strong relationship between these two sets of variables, in 

excess of their shared spatial correlation.  In general, soil C and N content was strongly 

correlated with community structure at all of the scales considered, while other properties 

(OM and texture) were only correlated with specific subsets of the community.  The 

models developed for larger spatial scales were more complex and indicated a stronger 

role of spatial heterogeneity in controlling microbial community structure, compared to 
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models developed for finer spatial scales (≤ 40 cm).  These results demonstrate the value 

of considering multiple spatial scales when studying environment-community 

interactions, and this approach was particularly useful for determining what physical and 

chemical soil properties helped control the development of this microbial community.  

Such information will allow scientists to better predict a community’s responses to 

external factors and the effect of its activities the environment. 

 

8.1.  Introduction 

 The factors affecting the size and composition of microbial communities in soils 

are poorly understood.  This is partially due to methodological constraints that limit our 

ability to study microbial diversity, and further complicated by the fact that any 

investigation of soil is faced with the problem that the substrate is highly variable on 

small scales, both horizontally and vertically.  This variability may result from a complex 

set of geological, pedological, and biological processes, as well as different types of land 

use.  Within a single field, the distribution of soil physical and chemical properties is the 

result of many superimposed processes acting at different spatial and temporal scales.  

These properties may cause differences in both the structure and function of soil 

microbial communities, and it is thought that the relative role of different forces may vary 

across scales.   

The assessment of spatial and temporal changes in microbial community 

structure, induced by biotic or abiotic factors, is a major research objective of 

environmental microbiology.  Obtaining information regarding community composition 

across various scales is an important first step in understanding microbial community 
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structure-function relationships, and knowledge of the spatial patchiness of bacteria is 

important for determining the appropriate sampling scales and for addressing basic 

ecological questions.  However, despite the assumed importance of spatial variability in 

soil microbiology, studies that specifically consider spatial scale when examining the 

distribution patterns of microorganisms, and the possible causes of these patterns, are 

rare.  Moreover, most of the studies that have investigated the spatial variability of soil 

physical, chemical, and microbiological properties only focus on a single spatial scale 

(Morris, 1999; Mottonen et al., 1999; Robertson et al., 1988; Saetre, 1999; Savin et al., 

2001), even though spatial heterogeneity in community composition, and the analysis of 

its relationship to habitat heterogeneity, is scale-dependent (Pinel-Alloul et al., 1995).  

Because of the hierarchical nature of spatial variability, any investigation of the 

distribution of populations and assemblages along environmental gradients should be 

integrated with a multi-scale analysis of spatial variability in order to more fully represent 

the complexity of natural systems (Benedetti-Cecchi, 2001). 

Recently, scientists have begun to focus on multi-scale comparisons when 

analyzing community-environment relationships, and have found evidence for nested 

scales of spatial structure for both soil physical-chemical properties and the associated 

microbial communities (Ettema and Wardle, 2002; Morris and Boerner, 1998 & 1999; 

Nunan et al., 2002; Robertson and Gross, 1994; Robertson et al., 1997; Saetre and Bååth, 

2000; Stenger et al., 2002).  In a recently published work, we explored the multi-scale 

spatial distribution of microbial community structure in an agricultural wheat field, and 

demonstrated that several scales of spatial autocorrelation may exist within the cm- to 10-

m scale (Franklin and Mills, 2003).  Nested levels of spatial autocorrelation were 
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observed (ranging from 30 cm to more than 6 m), and, in some locations, up to four 

distinct ranges of spatial influence were observed.  The presence of nested scales of 

variation suggests that the environmental factors regulating the development of the 

microbial communities in this soil may operate at different scales, and a simultaneous 

analysis of the multi-scale spatial variability of microbial community structure and soil 

microenvironment could help identify these factors and determine their relative 

importance.  The purpose of this manuscript is to present results concerning the multi-

scale spatial distribution of soil environmental properties, and to compare them to the 

previously reported data describing microbial community structure.   

Using geostatistical analyses and kriging, the spatial distribution of several 

physical-chemical soil properties was studied (total soil carbon and nitrogen, organic 

matter content, and soil texture).  Spatial structure was present at multiple scales in this 

system, and different environmental variables displayed different spatial patterns; some 

of these patterns were very similar to those previously observed for microbial community 

structure.  Simple causal modeling was used to study the direct relationship between each 

environmental variable and each microbial community property to determined whether 

the similarity in these patterns was significant, or spurious and the result of a shared 

spatial correlation.  The results indicted that there is a strong relationship among 

microbial community structure and the soil properties, and that the influence of spatial 

variability on these relationships changes at different spatial scales.  Moreover, different 

subsets of the microbial community responded differently to the various environmental 

properties. 
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8.2.  Materials and Methods 

8.2.1.  Site description and sample collection 

Soil samples were collected from an agricultural field on the eastern shore of 

Virginia (USA).  The field was located along the lagoonal shoreline of the Delmarva 

Peninsula, approximately 700 m from the edge of the open water (37° 17.62´N, 75º 

55.53´W).  The soil at this site was very sandy, with low organic matter content, and had 

been plowed as a single crop for many years.  At the time of sampling (May 2000), the 

field was planted with durum wheat (Triticum turgidum), which was approximately 75 

days old.   

Samples were collected with separation distances ranging from 2.5 cm to 11 m, 

following the sampling scheme detailed below.  At each sampling location, the loose 

layer of surface material was removed, and a small hole (1.5 cm diameter) was dug to 

collect 5 – 10 grams of soil.  The samples were placed on ice for transport to the lab, 

where they were sifted (approximately 750-µm mesh size) to remove gravel, plant, and 

root material, and stored at -80°C. 

 

8.2.2.  Sampling scheme 

 The basic sampling design was a square with 7.1-m edges and 10-m diagonals 

(Figure 8.1).  Samples were collected at regular intervals around the perimeter of the 

block (1.8-m separation distance), and at 1-m intervals along the diagonals.  At each node 

(A, B, C, D, and X), more concentrated sampling efforts were employed. 
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Figure 8.1.  Map of the sampling scheme.  (A) The sampling area was a 50 m2 square 
(diamond) with 10 m diagonals.  Around the perimeter of the square, samples were 
collected at 1.8 m increments, and at 1 m increments along the diagonals.  At each node 
(A – X), more concentrated sampling efforts were employed. A nested sampling pattern 
was applied at each location, and node A is presented in the figure as an example.  
Additional samples were collected at 10 cm increments (B) and 2.5 cm increments (C) in 
a cross shape surrounding each node 
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Nested within the original sampling grid, a second set of samples were collected 

at 10-cm increments in a cross shape surrounding each node.  Five samples were 

collected in each direction (north, south, east, and west) away from the center node.  

Nested within this area, a third set of samples was collected at 2.5-cm increments around 

each node, following the same pattern (2.5, 5.0, 7.5, and 10 cm in each direction).  A total 

of 193 soil samples were collected, 33 at each node and 28 at larger separation distances. 

 

8.2.3.  Analysis of soil properties 

Originally, these samples were collected with the research goal of examining the 

spatial distribution of the soil microbial communities (Franklin and Mills, 2003).  The 

results of that study prompted us to further analyze (the remains of) the initial samples, 

though this data collection was limited in two ways.  First, the soil samples we collected 

were necessarily small (5 – 10 g), to permit an analysis of small-scale (cm) spatial 

variability; this small sample size restricted the number and type of soil physical-

chemical properties that could be analyzed.  Second, because these analyses were 

performed on stored, frozen samples, certain parameters could not be evaluated (e.g., 

moisture content).  Within these constraints, we selected environmental properties that 

were likely to directly influence soil microbial communities, and measured total soil 

carbon (C) and nitrogen (N) content, organic matter content (OM), and soil texture (sand, 

silt, and clay fractions). 

The C and N content of the soil was determined using an elemental analyzer (CE 

Elantech, Lakewood, NJ).  For each sample collected in the field, an approximately 1-

gram subsample was oven dried and ground using a mortar and pestle.  From this 
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material, two subsamples of 30 mg each were analyzed, and the percent carbon and 

percent nitrogen were determined.   

A modified version of the pipette method was used for particle-size 

determination, based on the technique proposed by Kettler et al. (2001).  Percent sand, 

silt, and clay were calculated, and a small subsample of soil was also analyzed for OM 

content by determining the amount of material lost upon ignition (450°C, 24 hrs). 

 

8.2.4.  Analysis of microbial communities 

Several different techniques were used to characterize the microbial communities 

associated with each sample, including two DNA fingerprinting techniques (Amplified 

Fragment Length Polymorphism (AFLP) and Terminal Restriction Fragment Length 

Polymorphism (T-RFLP)), to compare community structure, and Acridine Orange direct 

counting (AODC), to determine bacterial abundance.  AFLP, used to obtain a picture of 

the overall differences in microbial community structure, was applied to all 193 samples.  

Those results have been discussed in detail in Franklin and Mills (2003), and will only be 

included in this manuscript as they relate to the present analysis of other microbial 

properties and environmental variables.  The T-RFLP and AODC techniques were applied 

to a subset of samples. 

 

8.2.4.1.  T-RFLP 

Two samples from each node (A, B, C, D, and X) were selected, DNA was 

extracted and quantified (Franklin and Mills, 2003), and T-RFLP was performed as 

described in Liu et al. (1997).  The eubacterial primers 27 Forward (5' AGA GTT TGA 
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TCC TGG CTC AG 3') and 1492 Reverse (5' GGT TAC CTT GTT ACG ACT T3') were 

used, and the 5' end of the 27 Forward primer was fluorescently labeled with 6-FAM  

(5[6]-carboxy-fluorescein) (Operon Technologies Alameda, CA).  The PCR reaction 

mixture included: 1X PCR buffer, 200 mM of each dNTP, 2.0 mM MgCl2, 1.0 µM of 

each primer, 0.4 µg µl-1 bovine serum albumin (BSA), and 1.25 units of Ampli Taq DNA 

polymerase (PE Applied Biosystems, Foster City, CA) per 50 µl reaction.  The thermal 

cycling conditions included an initial denaturation at 94°C for 5 min, followed by 35 

cycles of: 94°C for 0.5 min, 58°C for 1 min, 72°C for 2 min, with a final elongation at 

72°C for 10 min.  Separate portions (10 µl) of the PCR product were then digested with 

either the HhaI and RsaI restriction enzymes (New England Biolabs, Beverly, MA). 

Data were collected using an ABI Prism 310 Genetic analyzer.  The presence or 

absence of each terminal restriction fragment (T-RF) in each sample was determined and 

recorded as a matrix of 1’s and 0’s.  Relative similarly was calculated between each 

sample pair using the Jaccard coefficient (Sneath and Sokal, 1973), and converted to a 

dissimilarity measure using the following relationship: Dissimilarity = 1 – Similarity. 

 

8.2.4.2.  Microscopic counts of total bacterial abundance 

 After analysis of community structure and soil properties, microscopic counts of 

total bacterial abundance were carried out on any samples with material remaining (59 

samples, collected from locations throughout the plot).  Approximately 0.5 g of sample 

was combined with 50 ml filter sterilized water, and blended for 1 min.  The samples  
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were allowed to settle for 2 min, and a 1 ml aliquot was then removed.  AODC was 

performed (Bottomley, 1994; Hobbie et al., 1977), and the number of cells g-1 dry weight 

of soil was calculated. 

 

8.2.5.  Data analysis 

The objectives for this study can be classified into two general categories: (i) to 

test for the presence of spatial autocorrelation in the environmental data and to describe 

any spatial structure, and (ii) to explore the relationship between microbial community 

structure, soil microenvironment, and spatial separation.  A multi-scale approach was 

used, and each objective was addressed at each analytical scale.  Several different 

statistical techniques were employed to accomplish these goals including geostatistical 

semi-variogram analysis, kriging, and causal modeling using Mantel and partial Mantel 

tests.  A brief summary of each of these techniques is presented below, followed by 

specific information regarding the application of each procedure to our dataset.  For a 

comprehensive introduction to these statistical methods, readers should consult Legendre 

and Legendre (1998). 

Before any spatial statistics were computed, an exploratory data analysis was 

performed for each of the environmental variables and the bacterial abundance data 

(Table 8.1).  Summary statistics including the mean, range, standard deviation and 

coefficient of variation were calculated (SPSS Version 10.1.0), and a Kolmogorov-

Smirnov test demonstrated that each variable was normally distributed (results not 

presented). 
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Table 8.1.  Basic statistics for the environmental variables and bacterial abundance. 
 
 
 

Parameter (%)  Min Max Mean SD CV (%) 

       
Carbon (C)  0.35 0.89 0.60 0.104 17.3 
Nitrogen (N)  0.03 0.09 0.06 0.008 12.9 
Organic matter (OM)  0.61 1.58 1.05 0.21 20.0 
Sand  61.6 78.1 70.1 3.35 4.6 
Silt  19.6 34.4 26.1 2.63 10.1 
Clay  0.36 5.46 2.69 1.12 41.6 
       
Bacterial abundance *  1.0 × 109 3.1 × 109 1.9 × 109 5.4 × 108 28.4 
    
 
*  Cells gram-1 dry weight of soil. 
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8.2.5.1.  Outline of multi-scale approach 

An analytical approach was developed to quantify the spatial variability in this 

system at multiple scales.  For the first set of analyses, the relationships among all pairs of 

sampling locations were considered, to obtain an average portrait of the overall spatial 

variability in this plot.  Subsets of these data, varying in maximum separation distance, 

were then analyzed to quantify autocorrelation at different spatial scales.  These scales were 

named based on relative size, and the following designations were used:  plot scale (all 

sampling locations (separation distances ≤ 11 m)), large scale (≤ 5 m), small scale (≤ 1 m), 

and fine scale (≤ 0.4 m).  Because of the techniques and conventions used in geostatistical 

analyses, smaller-scale spatial autocorrelation structure is usually not detected when 

analyses are performed on larger spatial extents (for more details, see Franklin and Mills 

(2003)).  Therefore, in order to study the autocorrelation structure at these other spatial 

scales, only the relevant portions of the data were considered.   

 

8.2.5.2.  Characterization of spatial structure 

8.2.5.2.1.  Variogram analysis of environmental data 

Geostatistical variogram analysis was used to examine the spatial autocorrelation 

structure across the plot for each individual environmental variable at each analytical 

scale.  Experimental variograms were constructed using the semi-variance statistic and 

the procedure outlined in Franklin and Mills (2003).  In order to make meaningful  
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comparisons between data with disparate measurement units and/or different levels of 

spatial variability, the plots were standardized by dividing each variogram value by the 

overall sample variance prior to geostatistical modeling. 

 Each experimental variogram was modeled using either an exponential or linear 

equation; in some cases, neither model was appropriate and the variogram was classified 

as “nugget” (no spatial autocorrelation structure at the scale considered).  Variograms 

displaying a linear pattern represent a system where samples are autocorrelated at all of 

the separation distances measured.  The exponential model was used to describe 

variograms that displayed increasing variance with increasing spatial separation 

(conceptually similar to a linear model), and then reached a plateau, usually called the 

“sill”, which is roughly equal to the sample variance.  R2 was used to measure the fit of 

each model to the data using SigmaPlot (Version 5.0), and p values less than 0.05 were 

considered statistically significant.   

 From the model output, it is possible to calculate several parameters that are 

useful for describing spatial autocorrelation structure.  This manuscript will focus on the 

interpretation of three parameters: the range, spatial dependence, and the nugget effect.  

The range, sometimes referred to as “patch size” or “correlation length scale” (CLS), is 

the separation distance beyond which variance is no longer a function of spatial 

separation.  It is the “range” over which spatial autocorrelation can be detected, and 

samples at larger separation distances are not considered to be autocorrelated (for a given 

analytical scale).  Spatial dependence is the ratio of the spatially structured component of 

the model to the total variability captured by the model.  It represents the proportion of 

variability in the dataset that can be accounted for by the spatial autocorrelation structure 
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function.  This value approaches one in a strongly spatially structured system, and zero 

when no spatial structure is detected within the sampling extent used.  The nugget effect 

(sometimes referred to simply as “nugget”) is the amount of variability that is predicted at 

a separation distance of zero.  It represents variance that cannot be modeled using the 

spatial autocorrelation function, and may occur because of random sampling variance, 

experimental error, or variance at other spatial scales.  When the exponential model was 

applied to a variogram, estimates were obtained of each of these three parameters.  

However, when a linear model was used to describe the spatial structure, it was not 

possible to estimate the range (except to say that it is larger than the analytical extent 

used to construct the variogram) or the spatial dependence (because the sill is not 

known).   

 

8.2.5.2.2.  Variogram analysis of microbiological data 

 Because of the relatively small number of samples examined with AODC (N = 

59) and T-RFLP (N = 10), analysis of the spatial structure of these parameters was not 

performed at all analytical scales.  For the T-RFLP, only plot-scale variogram analysis 

was performed; dissimilarity was plotted versus spatial separation to produce a 

pseudovariogram similar to those used with the AFLP fingerprinting data (Franklin and 

Mills, 2003).  For the AODC data, analyses were performed at both the plot scale and the 

large scale as described above. 
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8.2.5.2.3.  Kriging 

Because the shape of the spatial autocorrelation structure function does not 

always clearly correspond to a single type of spatial structure, maps were created to 

represent the spatial distribution of each property using kriging.  Variogram models of the 

original dataset provided the basis for this estimation.  Ordinary block kriging was used 

to produce maps of the distribution of each environmental parameter, and bacterial 

abundance, at the plot scale, using the SADA statistical package (Spatial Analysis and 

Decision Assistance, Version 3.0.80, University of Tennessee).   

 

8.2.5.3. Modeling the environment–microbial community relationship  

8.2.5.3.1.  Approach and data preparation  

Causal modeling using Mantel and partial Mantel tests is a way of interpreting 

correlation coefficients in terms of hypothesized causal relationships among variables 

(Legendre and Legendre, 1998; Legendre and Troussellier, 1988).   In this study, it was 

used to examine the relationship between the microbial communities, the soil 

microenvironment, and spatial separation, with the overall goal of determining what 

factors might be important in controlling community composition and abundance.  The 

analysis was performed at each analytical scale (plot, large, small, and fine) to study how 

the perception/detection of these relationships changed when different spatial extents 

were considered. 

In order to simplify the analyses, the environmental variables were separated into 

three subgroups:  overall soil texture (combining sand, silt, and clay measurements), soil 

carbon and nitrogen (CN), and organic matter content.  Organic matter content was 
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maintained as a separate variable based on the fact that it did not correlate significantly 

with any of the other soil properties that were considered (results of a Pearson correlation 

analysis (not presented), p always greater than 0.1).  The relationship of each of these 

macrovariables (texture, CN, or OM) to either bacterial abundance (AODC) or similarity 

in microbial community structure (as determined by AFLP DNA fingerprinting) was 

examined.  The T-RFLP results were not considered in this analysis because of the small 

amount of available data.   

Since Mantel tests are used to compare distance/dissimilarity matrices, Gower’s 

coefficient was used to quantify the resemblance among samples (Gower, 1971; 

Legendre and Legendre, 1998); separate similarity matrices were developed for each set 

of environmental variables and for bacterial abundance.  Geographic (Euclidean) distance 

was computed for all pairs of sampling locations to assemble a spatial distance matrix.  

For the community structure data, relative similarity values were calculated using the 

Jaccard coefficient as previously described (Franklin and Mills, 2003).  When necessary, 

similarity matrices were transformed to dissimilarity matrices as: Dissimilarity = 1 – 

Similarity.  

In addition to studying the relationship of the environmental variables with 

overall community structure, we also wanted to examine whether different subsets of the 

microbial community responded to different environmental variables.  As suggested by 

Legendre (1993), a principal components analysis (PCA) was used to reduce the 

multivariate community data (the AFLP patterns) into a set of derived variables 

describing different aspects of community structure.  Each of the resulting principal 

components (PCs) correlates with a distinct pattern of variability, manifest with different 
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groups of AFLP bands.  Together, these components explained 27 % of the total variance 

in community structure (PC 1: 13%, PC 2: 8 %, and PC 3: 6 %).  Conceptually, these PCs 

may be considered to represent different “subsets” of the communities’ overall genetic 

composition, and are likely related to the distribution and relative abundance of different 

populations or groups of organisms.  Spatial autocorrelation analysis was performed, and 

maps of the spatial distribution of each PC were presented in Franklin and Mills (2003).  

In the present study, causal modeling was performed separately for each community 

subset (each PC) using similarity matrices obtained with Gower’s coefficient.   

 

8.2.5.3.2.  Development of conceptual models 

In constructing the causal models, the following relationships were hypothesized:  

(1) space → texture (the patterns observed in soil texture were “caused” by spatial 

structure (e.g., spatial autocorrelation)), (2) space → OM, (3) space → CN, (4) space → 

community (either total abundance or community structure), (5) texture → community, 

(6) OM ↔ community, and (7) CN ↔ community.  Because of the strong reciprocal 

relationship that may exist between microorganisms and the local availability of C, N, 

and OM, these relationships are presented with bi-directional arrows.  In contrast, the 

microbial community was not expected to significantly influence the particle size 

distribution of the surrounding soil, at the scales considered here, and so the arrow 

between “texture” and “community” was drawn in only one direction.  Using these  
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hypothesized relationships, it was possible to construct several possible models of 

relationships among the variables “space”, “environment” (either texture, CN or OM), 

and “community” (either community structure or abundance) (Figure 8.2).   

 

8.2.5.3.3.  Causal modeling 

Before presenting the details of this method, it is necessary to briefly describe the 

Mantel and partial Mantel tests.  A Mantel test is a regression in which the variables are 

actually similarity or distance matrices summarizing pairwise comparisons among 

samples; the Mantel statistic (rM) is computed by determining the sum of the cross-

products of the corresponding values in each of these matrices (Rossi, 1996).  The partial 

Mantel test, as developed by Smouse et al. (1986), allows testing for the correlation 

between two matrices while controlling for the effect of a third matrix, and is analogous 

to a partial correlation.  By comparing matrices in this way, it is possible to address 

questions such as:  (i) “do samples that are similar in environment tend to have similar 

microbial communities?” (Mantel test between a matrix of environmental similarity and a 

matrix of community similarity); (ii) “do samples that are close together have similar 

environmental properties?” (Mantel test with a matrix of geographic distances and a 

matrix of environmental similarity); and (iii) “is there a relationship between community 

similarity and environmental similarity, after removing the shared correlation of these 

variables with spatial separation?” (partial Mantel test using a matrix of community 

similarity and a matrix of environmental similarity, controlling for the effect of  a third 

matrix of geographic spatial separation distances).  
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Figure 8.2.  Potential individual models among space and the community and 
environmental variables.  All of the models within a particular box are mathematically 
equivalent, and can only be distinguished based on the hypothesized relationships among 
variables.   
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For simple causal modeling, a set of hypotheses is developed about the 

relationships among three variables; in our case, the variables were: “community”, 

“space”, and “environment”.  A limited number of “models” exist that can be used to 

represent the relationships among these descriptors (Figure 8.2), and each model 

corresponds to a set of specific predictions regarding the magnitude and significance of 

the Mantel and partial Mantel test results.  The development of these models and 

predictions are beyond the scope of this document; Legendre (1993) provides the 

expectations for all possible causal models involving three matrices in terms of the three 

simple and three partial Mantel test values.   

In this study, normalized Mantel and partial Mantel statistics were calculated to 

test several hypothetical relationships between the microbial community, soil 

environment, and spatial structure using the R statistical package (Legendre and Vaudor, 

1991).  The results (rM values) range from –1 and + 1, and the statistical significance of 

each test was evaluated through permutation (a Monte Carlo approach, with 1000 

permutations).  The significance level was corrected for multiple comparisons using a 

Bonferroni approach.  For each overall community model that was developed, 40 

simultaneous tests were performed, and a corrected significance level of 0.001 was used 

(0.05 / 40 comparisons = 0.001).  It is important to point out that, though these Mantel 

statistics are conceptually similar to Pearson’s correlation or partial correlation 

coefficients, the magnitude of a Mantel or partial Mantel statistic is often small, even 

when highly statistically significant (Dutilleul et al., 2000).   
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For each combination of an environmental variable and a community variable, all 

possible causal models were evaluated by comparing the Mantel and partial Mantel test 

results with the predictions outlined in Legendre (1993).  Individual models were rejected 

when the results did not conform to these predications, and, by process of elimination, a 

single plausible model was derived for each relationship.  For each scale, these individual 

models were pooled into a single integrated model summarizing all of the observed 

relationships in the system (Legendre and Troussellier, 1988). 

This modeling approach is based on correlation, and finding a significant 

relationship between two variables does not actually demonstrate cause.  None-the-less, 

failing to find a relationship between two variables suggests against a causal relationship.  

In this context, “causality” refers to the hypothesis that changes occurring in one variable 

have an effect on changes in another variable; data are said to support the causality 

hypothesis if a significant portion of the variation in one property in explained by 

changes taking place in the second property (Legendre and Legendre, 1998).  It should be 

noted that the correlation between two distance matrices in not equivalent to the 

correlation between the two variables behind these matrices; the matrix correlation 

specifically measures the extent to which the variations in the distances of Matrix A 

correspond to variations in Matrix B (Dutilleul et al., 2000). 
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8.3.  Results 

8.3.1.  Characterization of spatial structure 

8.3.1.1. Variogram analysis of environmental data 

 At the plot scale, spatial autocorrelation was observed for all of the environmental 

variables (Table 8.2).  In general, there was a good fit of the models to the data (average 

R2 = 0.72, range: 0.50 to 0.91), with very low p values.  Most often, a linear relationship 

was observed in the variograms (Figure 8.3), which indicates significant spatial 

autocorrelation over the entire sampling extent, and so no range estimate could be made.  

An exponential model was applied to the N and OM variograms, and range values of 5.4 

m and 6.2 m were calculated, respectively.   

Variogram analysis at other analytical scales indicated a large amount of 

autocorrelation structure, nested within the patterns observed for the entire plot (Table 

8.2, variograms not presented).  R2 values were generally high (average R2: large scale – 

0.72, small scale – 0.59, and fine scale – 0.66), and similar to those obtained for the plot-

scale analysis.  For sand, silt, and OM content, a linear spatial pattern was observed at 

both the large and small scales, and no structure was detected at the fine scale.  For the 

other variables, multiple scales of spatial autocorrelation, with nested CLS, were detected 

(Table 8.2, Figure 8.4).  Specifically, patch sizes (range estimates) for C were 0.7 m and 

3.7 m, and additional autocorrelation was observed at separation distances up to 11 m.  

Similar results were obtained in the analysis of clay (patch sizes: 2.5 m and > 11 m) and 

N (patch sizes: 0.2 m, 0.8 m, and 5.4 m).   



 

 

248

Table 8.2.  Summary of geostatistics for each scale. Only statistically significant model 
fits are reported (p < 0.05), all others are labeled as ‘nugget’.  
 
 

Parameter Model type R2 p Nugget Spatial 
dependence

Range 
(m) 

Plot-scale (≤ 11 m)     
 AFLP * Exponential 0.67 0.001 0.68 0.14 6.3 
 Carbon  Linear 0.91 < 0.0001 0.13  > 11 
 Nitrogen Exponential 0.63 0.0006 0.33 0.59 5.4 
 OM Exponential 0.57 0.01 0.45 0.48 6.2 
 Sand Linear 0.90 < 0.0001 0.00  > 11 
 Silt Linear 0.81 < 0.0001 0.01  > 11 
 Clay Linear 0.50 0.0003 0.41  > 11 
      

Large-scale (≤ 5 m)     
 AFLP * Exponential 0.70 < 0.0001 0.66 0.15 2.0 
 Carbon  Exponential 0.85 0.0002 0.35 0.63 3.7 
 Nitrogen Linear 0.58 0.003 0.42  > 5.0 
 OM Linear 0.53 0.02 0.51  > 5.0 
 Sand Linear 0.87 < 0.0001 0.15  > 5.0 
 Silt Linear 0.69 0.001 0.34  > 5.0 
 Clay Exponential 0.82 0.006 0.48 0.85 2.5 
      

Small-scale (≤ 1 m)      
 AFLP * Linear 0.83 < 0.0001 0.66  > 1.0 
 Carbon  Exponential 0.70 0.03 0.41 0.54 0.7 
 Nitrogen Exponential 0.74 0.009 0.49 0.50 0.8 
 OM Linear 0.64 0.003 0.68  > 1.0 
 Sand Linear 0.11 0.04 0.38  > 1.0 
 Silt Linear 0.71 0.002 0.33  > 1.0 
 Clay Linear 0.63 < 0.0001 0.31  > 1.0 
      

Fine-scale (≤ 0.4 m)     
 AFLP * Linear 0.52 0.003 0.67  > 0.4 
 Carbon  Nugget     
 Nitrogen Exponential 0.79 < 0.0001 0.25 0.73 0.2 
 OM Nugget     
 Sand Nugget      
 Silt Nugget      
 Clay Nugget      

 
* Franklin and Mills (2003), based on dissimilarity matrices. 
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Figure 8.3.  Plot-scale variograms for environmental properties.   
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Figure 8.4.  Summary of range estimates from the variogram analyses of the 
microbial and environmental properties at the different analytical scales.  The 
placement of an arrow at the end of a bar denotes that the range for that variable 
could not be determined, but is known to be “greater than” the number 
indicated. 
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Spatial dependence was calculated for those variables modeled using the 

exponential equation.  In general, the spatial autocorrelation model explained slightly 

more than half of the variability observed in those analyses (range: 0.48 – 0.85, average: 

0.62).  These values were similar for the different variables and across the four analytical 

scales, but much higher than those obtained in the previous analysis of microbial 

community structure (Table 8.2). 

 

8.3.1.2.  Variogram analysis of microbiological data 

At the plot scale, the T-RFLP results indicate the presence of spatial autocorrelation 

in community structure based on variability in the 16S rRNA gene (Figure 8.5 C).  

Considering the small number of samples analyzed (N = 45 pairwise comparisons), caution 

must be used when interpreting these results; nonetheless, an increasing trend is visible 

(linear fit, R2 = 0.30, p < 0.0001).  Samples collected from the same node were quite 

similar, and distinct from those collected at other nodes (Figure 8.5 D).   

Overall, 40 different T-RF were observed across all of the T-RFLP fingerprints, 

and 10 of these fragments (25%) were common to all samples.  For the samples collected 

at node A, several unique fragments were observed (up to 7), while samples from other 

nodes contained few, if any, unique markers.  The fingerprints generated from the 

samples collected at node A also contained a higher number of fragments (average for 

node A = 26.5, average for all other samples = 18), compared to the other samples.   
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Figure 8.5.  Results of AODC and T-RFLP analysis.  (A) Plot-scale variogram for 
bacterial abundance data.  (B) Kriged map showing the spatial distribution of bacterial 
abundance across the plot.  The circular symbols are used for Section 1, and the crosses 
are used for Section 2 (see text).  (C) Plot-scale variogram for T-RFLP data.  (D) Results 
of the T-RFLP, presented in a diagram indicating which restriction fragments (bands) 
were present in each individual sample.  Ten additional markers, present in all of the 
samples, were obtained, but omitted from the figure for simplicity.   
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The bacterial abundance data displayed neither a linear nor an exponential trend at 

the plot scale (N = 1711 pairwise comparisons) (Figure 8.5 A).  Instead, the graph had a 

peaked pattern, where abundance values became more different as separation distances 

increased, until approximately 5 – 6 m, and then became more similar at larger separation 

distances.  This pattern is consistent with variograms obtained when analyzing a circular 

gradient.  The magnitude of the slopes of the ascending and descending halves of the 

variogram were nearly identical (Section 1 (0 – 6 m): R2 = 0.43, p = 0.04, slope = 0.10; 

Section 2 (5 – 11 m): R2 = 0.65, p = 0.003, slope = - 0.11), which suggests that the rate of 

change of the microbial community with distance was approximately equal in each 

direction away from the center of the patch.  The results for the analysis of the ascending 

half of the plot-scale variogram (≤ 6 m) are essentially the same as those obtained for the 

large-scale analysis (≤ 5 m, N = 595 pairwise comparisons):  linear model, R2 = 0.62, p = 

0.06, nugget = 0.37, and range > 5 m. 

 

8.3.1.3.  Kriging results 

 Ordinary kriging was used to generate maps of the spatial distribution of each 

property at the plot scale (Figure 8.5 B and Figure 8.6).  Most of the environmental 

variables presented a gradient-like distribution over the sampling area, extending from 

the NE corner (upper right) of the plot across to the SW corner (lower left).  This is 

particularly true for the variables that only displayed larger-scale linear patterns of spatial 

autocorrelation in the variogram analysis (e.g., sand and silt).  For carbon, nitrogen, and,  
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Figure 8.6.  Kriged maps showing the distribution of each environmental variable at the 
plot scale.  The maps are oriented to match Figure 8.1A.  Sampling nodes are indicated 
with ‘+’, and the perimeter and diagonal sampling locations are marked with ‘•’.  The 
legend included with each map has units of ‘percent’. 
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to a lesser extent, clay, smaller-scale spatial heterogeneity is also visible within the 

larger-scale structure.  This is consistent with the results from the variogram analysis, 

where C, N, and clay were the only environmental variables that displayed multiple CLS 

(Figure 8.4).   

For bacterial abundance, kriging produced a map with a bulls-eye pattern, focused 

around the center of the plot (Figure 8.5 B).  Because of the unusual shape of the 

variogram obtained for AODC, the variogram model used to create this map was limited 

to separation distances less than 6 m (the ascending portion of the curve).  A second map 

was also produced using an inverse distance/nearest neighbor type algorithm (results not 

presented), and the pattern observed was quite similar to the original kriged map; this 

finding helps to confirm the validity of the kriged map. 

On some of the kriged maps (e.g., OM), aberrations or patches were occasionally 

observed in association with the individual sampling nodes (A – X).  To address the 

concern that this phenomena could be an artifact, generated by the high sample density at 

these locations, another set of maps were created using a single, averaged value to 

represent each node (results not presented).  These maps did not differ much from those 

presented in Figure 8.6.   

 

8.3.2.  Causal modeling 

8.3.2.1.  Overall community structure 

 Causal models considering overall community structure (similarity calculated 

from the complete AFLP dataset) and the relationships among the different 

environmental variables were produced for each analytical scale (Figure 8.7, Tables 8.3 
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and 8.4).  The models generated for the plot and large scales were the same for this 

comparison, and spatial separation was significantly correlated with the distribution of all 

of the environmental variables and microbial community structure (AFLP).  A strong 

correlation between soil texture and CN content was also observed.  None of the 

environmental variables were shown to correlate directly with overall community 

structure. 

 The results for the analysis at the small scale were similar to those obtained for 

the plot and large scales.  However, other relationships between the environmental 

variables were observed; in particular, changes in OM content were found to be 

correlated with changes in soil texture and CN.  For the fine scale, fewer significant 

relationships were observed, and spatial separation was shown to be only weakly 

correlated with community structure and soil texture.   

 

8.3.2.2.  Individual community subsets 

 Causal models were also produced to examine the relationship between each 

community subset (each PC) and the spatial and environmental variables (Figure 8.8).  In 

order to simplify these diagrams, the relationships among the environmental variables not 

directly correlated with community structure were not presented (already included in 

Figure 8.7).  
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Figure 8.7.  Causal models depicting the relationship among space and the different 
environmental variables, and between these variables and overall community structure 
(AFLP profiles), at each analytical scale.  Each solid line is significant with p values ≤ 
0.001; dashed lines correspond to nearly significant results with p values 0.001 < p ≤ 
0.01.   
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Table 8.3.  Mantel and partial Mantel test results examining the relationship among space 
and each environmental variable.  The “partial effect variable” indicates the third matrix 
used in the partial Mantel tests (the shared correlation of this variable with each main 
variable has been removed).  A partial effect variable of “none” indicates a direct Mantel 
test.  Mantel statistics (rM) are presented, and statistically significant values are indicated.   
 

 

Main Variables Scale 

A B 
Partial effect 

variable Plot Large Small  Fine  
        
Space CN None - 0.31 * - 0.39 * - 0.15 * - 0.04  
  OM - 0.30 * - 0.39 * - 0.14 * - 0.04  

  Texture - 0.19 * - 0.34 * - 0.14 * - 0.04  

  AFLP - 0.30 * - 0.38 * - 0.16 * - 0.04  
  AFLP PC1 - 0.30 * - 0.39 * - 0.15 * - 0.04  
  AFLP PC 2 - 0.30 * - 0.39 * - 0.14 * - 0.04  
  AFLP PC 3 - 0.24 * - 0.37 * - 0.15 * - 0.04  
        
 OM None - 0.05 + - 0.11 * - 0.09 * - 0.02  
  CN - 0.04  - 0.11 * - 0.08 * - 0.02  
  Texture - 0.06 + - 0.12 * - 0.08 * - 0.02  
  AFLP - 0.05 + - 0.11 * - 0.08 * - 0.02  

  AFLP PC1 - 0.05 + - 0.11 * - 0.09 * - 0.02  

  AFLP PC 2 - 0.05 + - 0.08 * - 0.09 * - 0.02  

  AFLP PC 3 - 0.07 + - 0.13 * - 0.09 * - 0.02  

        

 Texture None - 0.42 * - 0.34 * -0.12 * - 0.05 +

  CN - 0.36 * - 0.30 * - 0.11 * - 0.06 + 

  OM - 0.42 * - 0.34 * - 0.11 * - 0.05 +

  AFLP - 0.40 * - 0.34 * -0.13 * - 0.05 +

  AFLP PC1 - 0.42 * - 0.34 * -0.12 * - 0.05 +

  AFLP PC 2 - 0.42 * - 0.34 * -0.12 * - 0.05 +

  AFLP PC 3 - 0.37 * - 0.31 * -0.12 * - 0.05 +

       
 

* p ≤ 0.001 
+ 0.001 < p ≤ 0.01
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Table 8.3.  Continued 

 

 

Main Variables Scale 

A B 
Partial effect 

variable Plot Large Small  Fine  
        
CN OM None 0.04  0.05 * 0.12 * 0.05  
  Space 0.03  0.03 0.11 * 0.05  
  Texture 0.05  0.06 * 0.11 * 0.04  
  AFLP 0.04  0.05 * 0.12 * 0.04  
  AFLP PC1 0.05  0.06 * 0.12 * 0.03  
  AFLP PC 2 0.04  0.03 + 0.11 * 0.03  
  AFLP PC 3 0.05  0.06 * 0.12 * 0.04  
       
 Texture None 0.33 * 0.24 * 0.10 * 0.07 +

  Space 0.23 * 0.14 * 0.09 * 0.08 +

  OM 0.33 * 0.24 * 0.11 * 0.07 +

  AFLP 0.32 * 0.23 * 0.11 * 0.07 +

  AFLP PC1 0.33 * 0.24 * 0.12 * 0.07 +

  AFLP PC 2 0.32 * 0.23 * 0.10 * 0.06 +

  AFLP PC 3 0.29 * 0.22 * 0.11 * 0.06 +

       
        
OM Texture None -0.01  0.002 0.10 * 0.09 *

  Space -0.03  -0.04 + 0.09 * 0.09 *

  CN -0.02  -0.01 0.09 * 0.08 *

  AFLP -0.01 0.00 0.10 * 0.09 *

  AFLP PC1 -0.01 0.00 0.10 * 0.09 *

  AFLP PC 2 -0.01 -0.01 0.10 * 0.08 *

  AFLP PC 3 0.00 0.01 0.10 * 0.08 *

      
 
* p ≤ 0.001 

+ 0.001 < p ≤ 0.01
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Table 8.4.  Mantel and partial Mantel test results examining the relationship of space and 
each environmental variable with community structure.  The “partial effect” variable 
indicates the third matrix in the partial Mantel test (the shared correlation of this variable 
with each main variable has been removed).  A partial effect of “none” indicates a direct 
Mantel test.  Mantel statistics (rM) are presented, and statistically significant values are 
indicated.   

Variable Scale Partial effect  AFLP  AFLP 
PC 1  AFLP 

PC 2  AFLP 
PC 3  

            

Space Plot None  - 0.26 * - 0.02  - 0.10 * - 0.38 * 

  CN  - 0.25 * 0.03  - 0.08 * - 0.34 * 

  OM  - 0.26 * - 0.02  - 0.09 * - 0.38 * 

  Texture  - 0.26 * - 0.02  - 0.08 * - 0.32 * 
            

 Large None  - 0.22 * - 0.03  - 0.22 * - 0.23 * 

  CN  - 0.21 *     0.02  - 0.20 * - 0.20 * 

  OM  - 0.22 * - 0.03 + - 0.21 * - 0.24 * 

  Texture  - 0.22 * - 0.02  - 0.22 * - 0.19 * 
            

 Small None  - 0.12 *  - 0.05 + - 0.03  - 0.01  
  CN  - 0.13 * - 0.04  - 0.01  0.02  
  OM  - 0.12 * 0.03  - 0.02  0.00  
  Texture  - 0.13 * 0.04  - 0.02  0.00  
            

 Fine None  - 0.06 + - 0.04  - 0.01  - 0.04  
  CN  - 0.06 + - 0.04  - 0.02  - 0.03  
  OM  - 0.06 + - 0.03  - 0.01  - 0.04  
  Texture  - 0.06 + - 0.04  - 0.01  - 0.04  
            
            

CN Plot None  0.06  0.13 * 0.11 * 0.21 * 

  Space  - 0.04  0.14 * 0.07 * 0.11 * 

  OM  0.02  0.14 * 0.10 * 0.22 * 

  Texture  0.00  0.14 * 0.09 * 0.16 * 
            

 Large None  0.06  0.12 * 0.19 * 0.12 * 

  Space  0.00  0.12 * 0.11 * 0.05 * 

  OM  0.07  0.12 * 0.18 * 0.12 * 

  Texture  0.06  0.12 * 0.18 * 0.09 * 
            

 Small None  0.00  0.06 * 0.15 * 0.13 * 

  Space  - 0.02  0.06 * 0.14 * 0.13 * 

  OM  - 0.01  0.06 * 0.15 * 0.13 * 

  Texture  0.00  0.06 * 0.14 * 0.12 * 
            

 Fine None  0.04  0.03  0.21 * 0.16 * 

  Space  0.04  0.03  0.21 * 0.16 * 

  OM  0.04  0.03  0.21 * 0.16 * 

  Texture  0.04  0.03  0.21 * 0.15 * 

            

* p ≤ 0.001, + 0.001 < p ≤ 0.01 
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Table 8.4.  Continued 
 

Variable Scale Partial effect  AFLP  AFLP 
PC 1  AFLP 

PC 2  AFLP 
PC 3  

            

OM Plot None  0.01  - 0.05  0.09 + - 0.02  
  Space  0.001  - 0.05  0.09 * - 0.05  
  CN  0.01  - 0.05  0.09 * - 0.03  
  Texture  0.02  - 0.05  0.09 * 0.02  
            

 Large None  0.04 * - 0.04  0.16 * - 0.05  

  Space  0.02  - 0.05  0.14 * - 0.08 + 

  CN  0.04 + - 0.05  0.16 * - 0.05  

  Texture  0.04 + - 0.04  0.16 * - 0.05  
            

 Small None  0.03  0.03  0.05 + 0.00  
  Space  0.02  0.02  0.05 + 0.00  
  CN  0.03  0.03  0.05 + - 0.01  
  Texture  0.03  0.03  0.05 + - 0.01  
            

 Fine None  0.06 + 0.05  0.08 * 0.04  
  Space  0.06 + 0.05 + 0.08 * 0.04  
  CN  0.06 + 0.05  0.07 * 0.03  
  Texture  0.06 + 0.05  0.07 * 0.03  
            
            

Texture Plot None  - 0.07  0.05  0.06 * 0.22 * 

  Space  - 0.06  - 0.01  0.02  0.07 * 

  CN  0.16 * - 0.04  0.03  0.22 * 

  OM  0.18 * - 0.04  0.03  0.18 * 
            

 Large None  0.05  0.03  0.06 * 0.16 * 

  Space  - 0.02  - 0.02  - 0.02  0.09 * 

  CN  0.04 + 0.00  0.02  0.14 * 

  OM  0.05 * 0.03  0.06 * 0.16 * 
            

 Small None  - 0.02  0.01  0.06 + 0.08 * 

  Space  - 0.04  0.00  0.04  0.08 * 

  CN  - 0.01  0.01  0.06 + 0.07 * 

  OM  - 0.02  0.00  0.05  0.08 * 
            

 Fine None  - 0.02  - 0.01  0.06 + 0.08 * 

  Space  - 0.01  - 0.01  0.04  0.08 * 

  CN  - 0.02  - 0.01  0.05 + 0.07 + 

  OM  - 0.02  - 0.01  0.04  0.07 + 
            
 

* p ≤ 0.001, + 0.001 < p ≤ 0.01 
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Figure 8.8.  Causal models depicting the relationship among space, the environmental 
variables, and each subset of the microbial community (each PC), at each analytical scale.  
For simplicity, these diagrams only show the variables that were directly correlated with 
community structure; relationships among the various environmental properties are not 
presented (see Figure 8.7).  The impact of space on each model is also included.  Each 
solid line is significant with p values ≤ 0.001. 
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As was found for overall community structure, the models generated at the plot 

and large scales were identical.  Changes in community subset PC 1 were significantly 

correlated with changes in soil CN at separations distances larger than 1 m (plot-, large-, 

and small-scale analyses), but not at the finest scale.  Changes in community subset PC 2 

were associated with changes in both CN and OM at all of the scales considered.  

However, the relationship of spatial separation to changes in this subset of the microbial 

community was different at different analytical scales.  At both the plot and large scales, 

spatial separation was directly correlated to changes in PC 2, and to changes in both of 

the environmental variables controlling PC 2 (CN and OM).  At the small scale, the direct 

influence of space on PC 2 was not present, though space was still indirectly connected to 

PC 2 through the controlling environmental variables (CN and OM).  At the fine scale, 

CN and OM were again correlated with PC 2, but no significant relationships with space 

were observed.  For the different analytical scales, the same results were obtained for 

community subset PC 3, except that the relationship with OM was replaced by a 

relationship with soil texture.  The decreasing importance of spatial separation on 

community structure was again observed.  

 

8.3.2.3.  Bacterial abundance 

 Because of the relatively small number of samples analyzed with AODC, 

modeling was only performed at the plot and large scales (Figure 8.9, Table 8.5).  In both 

cases, OM was the only environmental variable that correlated with bacterial abundance.  

Spatial separation was also found to be indirectly correlated with changes in bacterial  
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Figure 8.9.  Causal models depicting the relationship among space, the environmental 
variables, and bacterial abundance (AODC), at each analytical scale.  Only the 
environmental variables that were directly correlated with bacterial abundance are 
presented, relationships among environmental variables are not repeated (see Figure 8.7).  
The impact of space on each model is also included.  Each solid line is significant with p 
values ≤ 0.001; dashed lines correspond to p values 0.001 < p ≤ 0.01.   
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Table 8.5.  Mantel and partial Mantel test results examining the relationship of space and 
each environmental variable with total bacterial abundance (AODC).  The “partial effect 
variable” indicates the third matrix used in the partial Mantel tests (the shared correlation 
of this variable with each main variable has been removed).  A partial effect variable of 
“none” indicates a direct Mantel test.  Mantel statistics (rM) are presented, and statistically 
significant values are indicated.   
 

Plot scale (up to 11 meters) 

Variables  Second main effect variable 

Main 
effect 

Partial 
effect  Space CN OM Texture  AODC

      

Space None − -0.43 * - 0.08 + - 0.51 * 0.02
 CN − − - 0.10 + - 0.41 * - 0.01
 OM − - 0.43 * − - 0.51 * 0.02
 Texture − - 0.29 * - 0.12 + −  - 0.04
 AODC − - 0.43 * - 0.09 + - 0.51 * −
    
CN None - 0.43 * − - 0.01 0.40 * - 0.02
 Space − − - 0.05 0.23 * - 0.03
 OM - 0.43 * − − 0.40 * - 0.02
 Texture - 0.29 * − 0.01 −  0.00
 AODC - 0.43 * − 0.00 0.40 * −
    
OM None - 0.08 + - 0.01 − - 0.05  0.19 *

 Space − - 0.05 − - 0.10  0.19 *

 CN - 0.10 + − − - 0.05  0.19 *

 Texture - 0.12 + 0.01 − −  0.19 *

 AODC 0.09 + 0.00 − - 0.03  −

    
Texture None - 0.51 * 0.40 * - 0.05 −  - 0.06
 Space − 0.23 * - 0.10 −  - 0.07
 CN - 0.41 * − - 0.05 −  - 0.06
 OM - 0.51 * 0.40 * − −  - 0.06
 AODC - 0.51 * 0.40 * - 0.03 −  −
    
 
* p ≤ 0.001, + 0.001 < p ≤ 0.01 
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Table 8.5.  Continued 
 

Large scale (up to 5 meters) 

Variables  Second main effect variable 

Main 
effect 

Partial 
effect  Space CN OM Texture  AODC

      

Space None − - 0.38 * - 0.36 * - 0.39 * - 0.22 *

 CN − − - 0.40 * - 0.33 * - 0.21 *

 OM − - 0.42 * − - 0.47 * - 0.17 *

 Texture − - 0.31 * - 0.44 * −  - 0.25 *

 AODC − - 0.38 * - 0.33 * - 0.41 * −
    
CN None - 0.38 * − 0.04  0.27 * 0.05
 Space − − 0.02  0.15 * - 0.03
 OM - 0.42 * − − 0.27 * 0.06
 Texture - 0.31 * − - 0.01  −  0.06
 AODC - 0.38 * − 0.04  0.28 * −
    
OM None - 0.36 * 0.04  − 0.001  0.18 *

 Space − 0.02  − - 0.04  0.11 *

 CN - 0.40 * − − 0.02  0.18 *

 Texture - 0.44 * - 0.01  − −  0.18 *

 AODC - 0.33 * 0.04  − - 0.01  −

    
Texture None - 0.39 * 0.27 * 0.001  −  - 0.03
 Space − 0.15 * - 0.04  −  - 0.13 *

 CN - 0.33 * − 0.02  −  - 0.04
 OM - 0.47 * 0.27 * − −  - 0.01
 AODC - 0.41 * 0.28 * - 0.01  −  −
    
 
* p ≤ 0.001, + 0.001 < p ≤ 0.01 
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abundance at the plot scale, and directly correlated to changes in abundance at the large 

scale.  These results are consistent with those obtained with the kriging (similar maps for 

AODC and OM (Figures 8.5 B and 8.6 B)) and variogram analyses. 

 

8.4.  Discussion 

This study was designed to address the general need for increased research into 

multi-scale patterns of spatial organization in soil systems, and the relationship of these 

patterns to the distribution patterns observed for the soil microbial communities.  In 

particular, the research focused on quantifying the spatial patterns associated with several 

physical-chemical soil properties and microbial community properties (structure and 

abundance) in an agricultural field.  The results obtained for the two sets of variables 

were then statistically compared in an effort to better understand the factors that may 

influence community organization and help constrain bacterial distributions at different 

spatial scales.   

The agricultural field described in this study was originally selected to represent a 

relatively homogeneous system, given that it had been plowed and planted as a single 

crop for several years.  Despite this history, and the small area sampled (50 m2), a great 

deal of spatial variability was observed in the physical-chemical properties of the soil.  At 

the plot scale, significant spatial autocorrelation was detected for all of the variables 

considered (Table 8.2, Figure 8.3); most often, a linear pattern was observed, indicating 

spatial autocorrelation over the entire sampling extent.  However, for OM and N, patch 

sizes of 5.4 m and 6.2 m, respectively, were calculated.   
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At smaller analytical scales, additional patterns of spatial autocorrelation were 

observed for C and N, and for clay content (Table 8.2, Figure 8.4).  The presence of these 

multiple scales of autocorrelation suggests that those variables may display a more patchy 

distribution, compared to the variables that have a single consistent autocorrelation 

structure (e.g., sand and silt).  This speculation can be confirmed by examining the kriged 

maps for each soil parameter (Figure 8.6).  In general, the maps show a gradient pattern 

that extends across the plot; this gradient-like distribution suggests the action of some 

underlying non-random process contributing to the plot-scale spatial structure of the 

environment in this field.  Previous work has shown that compaction due to wheel traffic 

(Parkin, 1993), or growth in crop rows versus aisles (Ettema and Wardle, 2002; 

Robertson et al., 1997; Stoyan et al., 2000), may contribute to the development of spatial 

structure in agricultural fields at similar scales.  However, none of these particular land 

management practices are likely to generate the types of spatial patterns observed here.  It 

is possible that this variation instead corresponds to historical differences in land use 

across the field (e.g., different boundaries between crops at an earlier time) or to some 

type of uncharacterized environmental feature (e.g., a small change in topography or in 

the predominant wind direction).  Alternately, the lagoonal shoreline lies approximately 

700 m to the east of the plot, and it is also possible that the gradient is somehow 

associated with proximately to the coast (e.g., increased sand content on the east side of 

the plot). 

The increased spatial variability for C and N, and the presence of patches nested 

within the overall gradient pattern, could be the result of short-range variations in plant 

growth, superimposed on the larger-scale patterns discussed above, as the spatial 
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organization of soil microorganisms has been linked to that of plants several times (Allen 

and MacMahon, 1985; Klironomos et al., 1999; Robertson et al., 1997; Schlesinger et al., 

1996).  However, any variability caused by plant growth would be expected to generate 

similar patches in both the C and N maps; instead, the spatial distribution patterns for 

these two variables were unique.  Because the C and N measures were of the total soil 

pool, they reflect not only spatial heterogeneity associated with biological activity, but 

may also be influenced by liming and fertilization of the soil.  These practices have been 

shown to directly influence microbial communities, typically resulting in increased 

biomass and changes in microbial functional properties (Brodie et al., 2003; Lovell and 

Jarvis, 1998).  Recent work by Sarathchandra et al. (2001) has also demonstrated that the 

addition of N via fertilization may influence microbial community composition and 

activity.   

While significant spatial structure was detected for all of the variables considered 

at the larger analytical scales, only N and community structure displayed spatial 

autocorrelation at the fine scale (≤ 0.4 m).  Previously, we found that the spatial 

distribution of community structure at the finer scales was different at the different nodes 

in the plot, so it is possible that a clear pattern was simply not detected because the data 

from all of these locations was pooled in the present analysis.  If the fine-scale spatial 

structure of a variable changes across the sampling plot, it may not be possible to observe 

an overall “average” pattern.   The decreased number of samples at the fine scale (N = 

1670 pairwise comparisons), compared to the large (N = 8288) and plot (N = 18528) 

scale analyses, could also limit our ability to detect fine-scale relationships.   
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Overall, the results of the geostatistical analyses demonstrate that physical-

chemical factors can vary substantially at small spatial scales in soils and within an area 

that would be classified as a single habitat.  These results are particularly striking because 

the effect of most agricultural practices is to homogenize soils and thus remove variation 

from nearby sites (Robertson et al., 1993).  Nonetheless, they are consistent with results 

from several earlier studies (Beckett and Webster, 1971; Robertson et al., 1988 & 1993; 

Webster and Butler, 1976).  For example, Robertson et al. (1997) found that > 50 % of 

the variability in soil properties in a cultivated field resulted from spatial structures 

between 5 and 60 m.  In abandoned fields, Tilman (1982) has shown that levels of 

important soil nutrients can vary at a scale of meters.  Similar patterns have been found in 

forest soils (Boerner and Koslowsky, 1989; Bringmark, 1989; Bruckner et al., 1999; 

Palmer, 1990), and even in aquatic systems (Lehman and Scavia, 1982; Smith, 1986), 

which suggests that variability such as this is likely to exist in most ecosystems.   

In this study, the spatial patterns observed for the environmental variables (Figure 

8.6) were quite similar to those found in the earlier analysis of community structure 

(Franklin and Mills, 2003).  In particular, the patch size estimates for some of the 

environmental properties were nearly identical to those calculated for the microbial 

community properties, and the kriged maps showed similar spatial patterns for the 

different groups of variables.  These similarities could be the result of an active response 

of the microbial populations to changes in soil microenvironment, or they could be the 

result of a spurious correlation between the two sets of variables, induced by a common 

spatial gradient.  These two possibilities were explicitly examined using causal modeling  
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with Mantel and partial Mantel tests; comparisons were made between sets of 

similarity/dissimilarity matrices to determine whether changes in the microbiological 

properties were correlated with changes in the environmental variables while considering 

the spatial separation of sampling locations.  

In the first set of analyses, overall community structure was considered using a 

similarity matrix derived from the AFLP fingerprinting data.  The variability in the AFLP 

patterns was strongly spatially structured at all of the analytical scales considered (Figure 

8.7), but did not correlate with environmental variability for any of the physical-chemical 

properties we measured (after the shared correlation with space was removed (Table 

8.4)).  However, the models developed for each community subset (PC) showed a strong 

relationship between changes in community structure and changes in both spatial 

separation and environmental variability (Figure 8.8).  Overall, CN seemed to be the most 

important environmental factor, as it was included in all of the community subset models.  

At each analytical scale, community subset PC 2 was also influenced by changes in OM, 

and changes in community subset PC 3 were correlated with changes in soil texture.   

The importance of spatial structure in the causal models decreased at smaller 

analytical scales.  For example, the plot and large-scale models for community subset PC 

2 indicate that the distribution of the microbial community is partially caused by changes 

in CN and OM content, and partially by other factors not explicitly identified but 

summarized under the term “space”.  Moreover, space was also correlated with changes 

in soil CN and OM, which presents to an additional indirect correlation between space 

and community structure PC 2.  This indirect correlation, via the environmental variables, 

was also observed at the small scale.  At the fine scale, space was not found to be an 
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important factor for any of the comparisons we made.  Similar results were obtained for 

community subset PC 3.  In general, the models developed for the larger spatial scales 

were more complex and better supported by the data, compared to the models for smaller 

spatial scales, and this is likely due to the same factors discussed above for the fine-scale 

variogram analysis.  It may also reflect increasing ecological complexity, which is 

expected for larger spatial scales, in that more variables are interacting to structure the 

environment. 

These models were developed based on how differences in one variable correlated 

with differences in another variable, but they do not provide any information about the 

environmental regime associated with each community.  To investigate this, a PCA was 

performed on the environmental data collected from each of the nodes, and a plot of the 

first two PCs was produced and compared to PC plots created for the community 

structure data (Figure 8.10).  Combined, the first two PCs explained ~ 75% of the 

variance associated with the environmental properties.  The variables important for PC 1 

were: sand (factor loading = 0.96), silt (- 0.91), C (0.86), and clay (- 0.80), and the 

variables important for PC 2 were: OM (0.86).  Soils from nodes A and D have high 

carbon and sand content, and low amounts of silt and clay, while soils from nodes B, C, 

and X have lower carbon and sand content, and relatively high amounts of silt and clay.  

In general, the results for the PCA of the environmental variables are quite similar to the 

results obtained from the AFLP and T-RFLP data (Figure 8.10). 
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Figure 8.10.  Principal components plots.  (A and B) AFLP data, (C) T-RFLP  
data, and (D) environmental data.  Error bars represent 99% confidence intervals.   
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It is not necessarily surprising to discover that patterns in soil C, N, and OM were 

strong controls on microbial community structure.  It is generally accepted that microbial 

community composition is partially controlled by the amount and type of substrate 

available, and carbon is often a limiting factor for microbial growth in soil (Aldén et al., 

2001).  Previous work has also demonstrated the existence of  “hot spots” (zones of 

intense microbial activity and large microbial populations) in relation to available organic 

matter (Gonod et al., 2003); in this study, a strong relationship was observed between 

bacterial abundance and soil organic matter (Figure 8.9) 

The response of the microbial community to the distribution patterns for C, N, 

and OM indirectly suggests a relationship between the microorganisms and the 

distribution of vegetation in the plot.  The structure and functional diversity of microbial 

communities in soils has been show to be tightly related to plant species composition and 

distribution (Grayston et al., 2001; Kourtev et al., 2003), and there is evidence that 

certain components of microbial community structure can vary at spatial scales consistent 

with the distribution of individual plants (Cavigelli et al., 1995; Robertson et al., 1997).  

It is likely that differences in the age or health of the individual plants can also alter 

microbial community structure.  These changes in the microbial community may, in turn, 

influence plant growth.  For example, changes in the efficiency with which microbial 

communities decompose organic matter and/or changes in the size or composition of the 

microbial community have been demonstrated to cause changes in nutrient cycling 

(Boerner and Rebbeck, 1995; Cotrufo et al., 1994) and in the structure of the plant 

community (Lambers, 1993).   
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Compared to C, N and OM, much less is known about the way the physical soil 

matrix affects microbial community structure and function.  Several studies have 

confirmed that particle size may influence microbial communities, however the nature of 

the effect seems variable; some reports indicate that reducing particle size results in 

increased rates of microbial processes (Amato and Ladd, 1988; Bending and Turner, 

1999), while others have found the reverse effect (Jensen, 1994; Sorensen et al., 1996).  

Soil texture has the potential to affect the accessibility of substrate to soil organisms as 

well as influence many aspects of the soil microenvironment (e.g., the exchange of water, 

nutrients, and oxygen).  Soil texture is also thought to influence microbial community 

structure by affecting biological interactions between organisms such as competition and 

predation (e.g., by providing physical protection to prey species (Wright et al., 1995)).   

In this study, the causal models were presented with texture “influencing” the 

microbial community, but not vice versa.  This is not entirely accurate, as it has been 

shown that soil microorganisms may act as ‘glue” and mesh soil particles together via 

exudates and fungal hyphae (Ramakrishnan et al., 2000); this produces clusters of soil 

that may have properties that are quite different compared to soil not affected by biota 

(Kristensen et al., 2003; Preston et al., 1999).  Our analysis of particle size distribution 

included chemical treatment and agitation to disrupt this binding, and therefore did not 

reflect any of the changes in soil texture/aggregation that may have been induced by 

microbial activity.   

There are a number of soil environmental factors that may influence microbial 

community properties besides those we measured.  For example, evidence shows a close 

relationship of soil microbial communities and pH, soil moisture, and soil temperature 
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(Emmerling et al., 2001).  There are also a number of biotic factors that may be 

important, including small-scale relationships among the microorganisms (e.g., 

competition or predation).  Furthermore, cm- to meter-scale patterns of spatial variability 

have also been observed for soil fungi and nematodes, and have been linked with 

microbial patterns (Ettema and Yeates, 2003; Gorres et al., 1998; Kuperman et al., 1998; 

Mottonen et al., 1999; Robertson and Freckman, 1995).  These relationships are in 

addition to those associated with plants (discussed above). 

It has been suggested that conclusions about the organization of microbial 

communities, the effects of disturbance, or the roles of various limiting factors are likely 

to differ at different spatial scales (Wiens et al., 1986).  Paradoxes may arise when 

different investigators, studying similar communities but at different scales, arrive at 

different conclusions about the factors that structure these communities; these 

disagreements may reflect viewpoints of different scales, and not necessarily differences 

in the way communities are organized (Rahel, 1990).  The results of this study indicate 

that one’s conclusions regarding the factors that are important for controlling community 

structure in this system can indeed change depending on the analytical scale used (even 

within the range of cm to 10 m), but can also greatly depend on the portion of the 

community studied.  In particular, the different ‘community subsets’ were found to 

correlate with different environmental properties.  This finding has important 

implications considering that the different techniques available to characterize microbial 

community structure all have limitations, and are generally biased and focus on particular 

portions of the microbial community.  For example, traditional microbiological methods  
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are selective for microorganisms that are capable of growing on culture media, 

community level physiological profiling (CLPP) may be biased toward faster growing 

organisms (Konopka et al., 1998), and the numerous molecular genetic methods may 

provide very different results depending on differences in nucleic acid extraction 

procedures, PCR conditions and primers, or the resolution associated with a particular 

technique.  The results of our study suggest that researchers must be especially careful 

about comparing separate community-environment studies that use different assays to 

evaluate community structure; the findings may change considerably depending on the 

portion of the community actually evaluated.  

In this study, we used two very different DNA fingerprinting techniques (AFLP 

and T-RFLP), with different levels of resolution, to characterize microbial community 

structure.  T-RFLP is a technique that can be used to examine differences between 

microbial communities based on variability in the 16S ribosomal RNA gene.  It is 

particularly useful when applied in conjunction with clone libraries and DNA sequencing, 

as it allows for the identification of community members.  However, it is well known that 

T-RFLP underestimates the species richness of a community because populations that are 

not numerically dominant are not represented if their template DNA constitutes too small 

of a fraction of the total community DNA pool (Dunbar et al., 2000; Liu et al., 1997).  

Moreover, because T-RFLP is insensitive to changes in community composition that may 

occur at the level of individual strains or species (Buckley and Schmidt, 2001), microbial 

communities whose overall structure appears similar by T-RFLP analysis may still 

possess ecologically significant differences in community composition.   
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AFLP is a DNA fingerprinting technique in which a restriction digest is 

performed on a DNA sample (similar to RFLP), and then a set of primer-recognition 

sequences (adaptors) is used to amplify the restriction fragments using PCR (Zabeau and 

Vos, 1993).  The primers and restriction enzymes used are not specific for a given gene 

or group or genes but can, theoretically, interact in numerous random places throughout a 

genome, making AFLP a useful technique for analysis of overall differences between 

communities, including strain- or species-level changes.  Variability at this taxonomic 

level is still ecologically important and may be responsible for differences in the 

physiological capacity of different microbial communities.  One major limitation of 

AFLP is that lack of a relationship between characters in the DNA fingerprints (e.g., the 

size of a band) and any species or genus identification.  Consequently, AFLP profiles 

provide a means of determining differences between communities’, but fail to provide 

insight into the identity of the specific organisms responsible for those differences.  In 

our study, this means that we cannot identify the organisms responsible for the 

differences between our community subsets (PCs), but there are a number of other 

techniques that could be applied to our DNA samples if that information was of specific 

interest.   

Spatial variability, such as we observed in this study, is likely to exist in most 

ecosystems, and needs to be considered when making inferences about ecological 

relationships and when developing strategies to sample the environment (Robertson et al., 

1997).  In particular, understanding the scale at which a parameter must be measured is 

essential to creating a sampling design that will result in a sound ecological evaluation of 

that parameter, and in determining sample sizes and appropriate statistical techniques for 
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data analysis.  However, the extent to which the specific findings presented in this study 

can be extrapolated to other times and sampling scales at this site, or to different sites, is 

unclear.  Furthermore, this study only considered horizontal variability across the field, 

and did not investigate changes associated with vertical depth into the soil.  Most studies 

in soil microbiology have focused exclusively on the surface layers of the soil, and less is 

known about the nature of microbial communities found throughout the soil profile 

(Fierer et al., 2003).  Deeper layers of soil may contain microbial communities that are 

specialized for their environment and fundamentally different from the surface 

communities, and recent studies have found that the composition and structure of soil 

microbial communities changed significantly with soil depth (Blume et al., 2002; Fierer 

et al., 2003; Griffiths et al., 2003; Zyagintse, 1994). 

The results presented in this paper provide a snapshot of the relationships in this 

field at a single time, and do not consider the role of temporal variability, or its 

interaction with spatial heterogeneity, in determining community patterns.  Because 

different environmental variables are important not only at different spatial scales, but 

also at different temporal scales, studies that examine both simultaneously are needed.  

Some of the soil properties we measured are expected to be relatively static (e.g., sand or 

silt content), while other, such as C, N, or OM are expected to be more seasonally 

dynamic.  Still others, which we did not measure, such as temperature or water content, 

may cause variations over even shorter time scales.  Changes in microbial communities 

have also been shown to arise due to tillage practices, input of fertilizers, organic 

residues, and pesticides, and crop rotations.  For example, it has been reported that  
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microbial biomass can fluctuate sharply over days following agricultural management or 

natural influences like drying and rewetting of a soil (Ocio et al., 1991 a & b;  

Wyland et al., 1995).   

While increased knowledge of these many factors influencing microbial 

community structure, and the role of space and time in this relationship, is important, 

there is particular interest in understanding how these factors may affect the activity of 

microorganisms in an ecosystem.  Soil microbes play a crucial role in keeping the main 

nutrients cycling in soils (C, N, P, S), and are fundamental for the long-term functioning 

of ecosystems.  The results from the present study demonstrate that changes in 

community structure may occur is association with different environmental conditions; 

however, it remains to be determined how/if this change in structure will manifest as a 

change in microbial community function.  Little is known of the importance of microbial 

community structure and diversity in the functioning of soils (Degens, 1998; Giller et al., 

1997; Pankhurst et al., 1996), though it is often hypothesized that diversity is important 

for the maintenance of soil processes, and that reductions in soil microbial diversity will 

disrupt the functional capability of soils (Giller et al., 1997).  However, considering the 

incredible diversity of microbial systems, the extreme physiological versatility of 

microorganisms, and the high level of functional redundancy thought to be present in 

microbial communities, this may not be the case.  The few studies available that 

specifically address this hypothesis in soils present conflicting results (Atlas et al., 1991; 

Klein et al., 1986; Salonius, 1981), though there is some evidence to suggest a link 

between the microbial community structure and function.  For example, Zogg et al. 

(1997) studied the structure of microbial communities using phospholipid fatty acid 
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profiling (PLFA) and function using respiration kinetics, and concluded that changes in 

the communities’ structure during soil warming were related to changes in function.  

Similarly, PLFA profiles have been correlated with enzyme activities in several different 

soil systems (Kourtev et al., 2003; Waldrop et al., 2000).  Nevertheless, at this point, it is 

not possible to extrapolate information about microbial community function from an 

analysis of the structure of the community (Degens, 1999).  Increased research into the 

relationship between structure and function is necessary before scientists can anticipate 

how habitat disruption and changes in community structure may impact community 

activity and ecosystem performance, and a better understanding of the role of spatial 

heterogeneity in microbial communities with help ecologists to determine the relevance 

of small-scale observations and experiments for large-scale patterns and processes.   
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Chapter 9.

Conclusions and synthesis
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9.  Conclusions and synthesis

The results presented in this dissertation demonstrate the importance of research

into issues associated with spatial scale and microbial communities.  The work provides

much needed experimental and statistical information on spatial variability of microbial

communities and the relationship of community organization to environmental

heterogeneity.  The important results and conclusions may be divided in three general

(but not exclusive) categories: (i) methods for microbial community analysis, (ii)

conclusions regarding spatial structure in microbial systems, including issues related to

statistical techniques and experimental design, and (iii) the relationship of microbial

community structure and function.  The major results for each topic are presented below.

A discussion of how these results relate to other recently published work is included, as

are recommendations for future research.    

9.1. Conclusions regarding methods for microbial community analysis

9.1.1. Arbitrarily primed PCR-based DNA fingerprinting techniques such
as RAPD and AFLP are useful means of analyzing microbial
community structure.  

The work presented in this dissertation demonstrates that DNA fingerprinting

techniques such as these are a useful means of discriminating among microbial

communities and estimating relative community similarity.  In general, the results

obtained using RAPD and AFLP were quite reproducible and consistent with other

techniques for whole-community analysis of microbial assemblages.  Results obtained

using RAPD and AFLP were compared with many commonly used whole-community
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approaches including DNA-DNA hybridization (Lowit et al., 1998), community-level

physiological profiling (CLPP), and molecular genetic techniques based on analysis of

the 16S rRNA gene.  The results of these comparisons are discussed in more detail in

Sections 9.1.2 and 9.1.3.  

RAPD and AFLP are fairly easy to perform and may be readily adapted for use

with many different types of samples.  As part of my dissertation work, I used these

procedures to analyze microbial communities isolated from tidal creeks, aerobic and

anaerobic groundwater, salt marsh sediments, sewage, and agricultural soil.  One

particular advantage of the RAPD approach is that it does not require as much specific

equipment as most other molecular genetic techniques, and thus may be employed in a

laboratory that does not necessarily specialize in such analyses.  More specifically,

RAPD does not require that a researcher have access to a DNA sequencer or capillary

electrophoresis equipment, as does T-RFLP.  Moreover, useful RAPD profiles may be

obtained using simple agarose gel electrophoresis and staining with Ethidium Bromide,

whereas procedures such as DGGE or AFLP demand the use of more complicated

electrophoresis equipment and/or alternate staining procedures. 

9.1.2. Genotypically-based whole-community analyses provide similar
results to phenotypically-based analyses of community structure. 

Throughout my dissertation research, several different molecular genetic

techniques (RAPD, AFLP, DGGE, and T-RFLP) were compared to techniques based on

the differential physiological response of different microbial communities (traditional

CLPP and dilution-to-extinction CLPP, as well as traditional plate counts).  Similar
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results were obtained using each technique, but the procedures differed in their resolution

and in the specific type of information they provided.  Moreover, different techniques

were sensitive to different types of changes in community structure (e.g., changes in the

distribution of types versus changes in the identity of types).  The different, but

complementary, results from the various procedures highlights the importance of using

multiple techniques to evaluate microbial communities in ecological studies.  

Integrated diversity studies, based on the combined use of molecular methods,

physiological measurements, and appropriate culture-based analyses, have been

recommended by a number of researchers (Chandler et al., 1997; Grundmann and

Gourbiere, 1999; Head et al., 1998), but are not commonly performed.  In the present

work, the conclusions drawn from the use of any individual analytical technique were not

as valuable as the interpretation of these conclusions in the context of the results from the

other techniques.  Moreover, it is important to point out that the “restrictions” of a

particular technique are not necessarily always “limitations”, and can be manipulated to

the advantage of a researcher when specific questions are of interest.  For example, the T-

RFLP technique was limited in that it only provided information regarding the

distribution of dominant organism types (Torsvik et al., 2002); however, in some

situations that type of information is particularly useful.  In the research presented here,

the information was particularly valuable when comparing the results from the

dilution/regrowth experiments to the numerical simulations (Chapter 3 and 4).

The results presented in this dissertation also allow for a comparison of genotypic

and phenotypic approaches to microbial community analysis.  The fact that these two sets

of methods provide similar results demonstrates that differences in genotype actually
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have the potential to manifest as differences in the function of microbial communities.

Often times, when researchers are advocating the use of molecular methods over culture-

based procedures and CLPP, the reason presented is that the later procedures are too

biased toward certain groups of organisms.  In particular, it has been suggested that CLPP

results reflect changes in community structure that are primarily due to differences

among fast growing copiotrophic organisms (Konopka et al., 1998), and traditional

culture-based techniques are strongly influenced by the environmental conditions and

growth substrate used in the assay.  The results presented in this dissertation demonstrate

that these limitations are not necessarily any more restrictive than those associated with

the various molecular analyses.  Moreover, the role of classical microbiology should not

be undervalued as new and more advanced molecular genetic procedures are developed.

These genetic analyses permit cataloging of organisms based solely on DNA sequences,

thus permitting assessments of diversity and community structure, but provide no

information on the functional role an organism plays (or is capable of playing) in an

ecosystem.  

9.1.3. Analyses of microbial community structure that rely upon examination of
16S rRNA genes may not be as accurate or as functionally relevant as
techniques that consider variability throughout the microbial genome.

With T-RFLP, PCR is used to amplify the 16S rRNA genes directly from a

sample of community DNA, and analysis produces a fingerprint wherein each individual

band (T-RF) is, theoretically, derived from a different type of organism (Liu et al., 1997).

However, it is well known that T-RFLP underestimates the richness of a community

because populations that are not numerically dominant are not represented if their
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template DNA constitutes too small a fraction of the total community DNA (Dunbar et

al., 2000; Liu et al., 1997).  Moreover, due to the conservation of restriction site positions

in the 16S rRNA gene, the resolution of T-RFLP is not at the species level (Buckley and

Schmidt, 2001), but instead reflects the distribution of higher order groups.    

With AFLP, a restriction digest is performed on a DNA sample (similar to RFLP),

and then a set of primer-recognition sequences (adaptors) is used to amplify the

restriction fragments using PCR (Zabeau and Vos, 1993).  In contrast to T-RFLP, the

primers and restriction enzymes used are not specific for a given gene or group or genes,

but can interact in numerous random places through a genome.  AFLP is fundamentally

different from most of the other techniques used to analyze microbial community

structure in that it is sensitive to overall differences between communities – including

taxonomic distances between community members. 

In my comparisons of T-RFLP and AFLP, whenever significant changes in

community structure were observed using T-RFLP, the same results were obtained with

AFLP (Chapters 3, 4, and 8).  However, AFLP consistently revealed additional

significant differences that were not detected with T-RFLP.  For example, in the

dilution/regrowth experiments discussed in Chapter 4, T-RFLP separated the various

dilution/diversity communities in two distinct groups, while AFLP divided the

communities into three significantly different sets.  

The results of the comparison of these two techniques confirm that the AFLP

procedure is not limited to the detection of dominant organism types to the same extent as

T-RFLP.  The identification of a technique that responds to changes due to rare(r) species

is particularly important, given that so many of the methods currently used focus on the
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characterization of the dominant organism types.  Those dominant organisms may

actually represent a small portion of the total microbial community; for example, in water

only about 10 % of the simultaneously coexisting species are dominant (Torsvik et al.,

2002).  The development of techniques that better consider the contribution of rare

organism types to overall community structure and function is an important area for

further study.  Alternately, it is possible that the difference between the two methods is

due to the fact that AFLP considers variability throughout the microbial genome, and not

just that associated with a single gene.  This could make the technique more sensitive to

overall differences between communities, including strain- or species-level changes.  

Additional analyses were performed to examine the relationship of AFLP

fingerprinting and T-RFLP to overall community function (Chapter 4).  The fact that

there were no significant correlations between T-RFLP community structure and

community function, but strong correlations for AFLP, suggest that the analysis of

overall community structure using AFLP may be a better predictor of potential/actual

changes in community function, compared to an analysis of the 16S rRNA gene (via T-

RFLP).  Given that metabolic functions are seldom phylogenetically grouped (Ward et

al., 1995), this is not necessarily surprising.  Because AFLP fingerprints reflect variability

present throughout the entire community DNA pool, differences in functionally relevant

genes can also contribute to the AFLP profile, and thus may explain the correlation

observed between the AFLP community structure assay and community function. These

results indicate that microbial communities whose overall structure appears similar by T-

RFLP analysis may still possess ecologically significant differences in community

composition.  An alternate explanation for the results presented here is that the
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correlation between AFLP-based community structure measurements and activity is

partially due to the inclusion of rarer organisms in the structural assay.  Overall, the

results of the comparison of these two techniques suggests that the AFLP procedure may

be a more useful technique for analysis of overall differences between communities and

may be a better predictor of potential/realized differences in community function.  

9.1.4. The dilution/regrowth approach is a useful method for studying
microbial community structure.   

The dilution/regrowth approach has been used several times as means of

establishing microbial communities differing in structure and relative diversity (Garland

and Lehman, 1999; Garland et al., 1999; Griffiths et al., 2001; Mills et al., 2003; Morales

et al., 1996; Salonius, 1981).  In general, the premise behind each of these studies was

that dilution of a complex community will exclude organism types, creating mixtures of

cells differing in diversity.  However, the actual effect of dilution on diversity has not

previously been quantified.  The numerical simulations presented in Chapter 3

demonstrate that, though the basic premise behind the dilution/regrowth approach is

valid, its application to diverse microbial communities requires careful consideration of

the initial distribution of the community.  The results also indicate that the

dilution/regrowth approach is itself a useful means of analyzing a microbial community;

a great deal of information about the richness and distribution of the original community

may be gained by analysis of the regrown assemblages (Chapters 3 and 4).  
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Overall, the results of the dilution/regrowth studies indicate that the approach is a

useful means of creating communities differing in community structure and overall

diversity for future use in experimental studies.  This approach has been used to study the

stability and resilience of microbial communities to several types of perturbations

(Garland et al., 1999; Mills et al., 2003; Morales et al., 1996), and the work presented in

this dissertation provides important information regarding the types of community

changes that would have been considered in the previous work.  Unfortunately, the

dilution/regrowth approach does not provide much flexibility for manipulating

community diversity, nor does it allow for any manipulation based on the functional traits

of either the individual organism types or the combined community.  More

comprehensive studies that consider differences in microbial communities beyond that

which is possible using dilution/regrowth are needed.  In order to more fully examine the

role of properties such as community composition and structural diversity, functional

diversity, or functional characteristics of specific organism types, it will be necessary to

work with constructed communities, so different aspects of the community may be more

fully manipulated and more careful controlled.  

Most studies using constructed communities do not work with mixtures that are

very similar to natural communities; that is, they frequently comprise too few types and

use combinations of organisms that may not occur in natural environments.  Recent work

by Button et al. (1993) describes an “extinction culturing” approach that may be useful

for obtaining large numbers of isolates from individual communities, which could then be

used for more comprehensive studies with constructed communities that have a higher

richness and use naturally co-existing types.  In its original form, the extinction-culturing
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approach was very laborious; however, high-throughput methods have recently been

developed to enable isolation of a large number of types of microorganisms relatively

quickly (Connon and Giovannoni, 2002).  Using communities constructed with this

approach would allow us to manipulate different aspects of diversity, and then examine

the relationship of diversity to other community-level properties such as productivity and

stability.  

9.2. Conclusions regarding spatial structure in microbial systems, including
issues related to statistical techniques and experimental design

9.2.1 The application of geostatistical techniques to the analysis of
community fingerprinting data can provide useful information
regarding the spatial organization of microbial communities.  

Geostatistics is a set of statistical tools for incorporating the spatial coordinates of

sampling observations into data processing.  These tools can provide a powerful means of

quantitatively describing spatial variation by expressing a measure of association, or

autocorrelation, between two samples as a function of the distance between them.  When

applied to microbiological data, most of the analyses have focused on either the µm to

cm-scale distribution of individuals (Dandurand et al., 1995 and 1997; Grundmann and

Debouzie, 2000; Nunan et al., 2001 and 2003), or the larger-scale distribution of total

microbial biomass and abundance (Moran et al., 1987; Mottonen et al., 1999; Robertson

et al., 1997; Saetre, 1999; Smith et al., 1994; Troussellier et al., 1993); the techniques are

rarely used to analyze community composition or microbial diversity (Cavigelli et al.,

1995; Mackas, 1984; Saetre and Bååth, 2000).  
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One of the important contributions of this dissertation research was the

application of geostatistical methods to the analysis of spatial patterns in microbial

community structure, particularly to the analysis of DNA fingerprinting data.  The

number of studies in microbial ecology that use molecular techniques is growing rapidly,

and this rate can be expected to continue to increase with the further improvement of

methods particularly tuned for environmental work.  However, progress in developing or

applying quantitative statistical techniques to the analysis of these data has been much

slower.   This is true not only in the field of spatial analysis, but throughout

environmental microbiology.  For example, much of the information that is available

regarding changes in community structure in response to environmental perturbations

relies upon the visual interpretation of DNA fingerprinting patterns, but what is needed is

a means of quantifying these differences and determining their significance in order to

make meaningful comparisons between different experiments and laboratories.  DNA

fingerprinting data are particularly amenable to multivariate methods and other statistical

procedures that are typically used to examine taxonomic diversity or community

composition for macroorganisms, and these techniques may often be applied to the

analysis of microbial communities with relatively little modification.  For example,

principal components analysis, cluster analysis, and Mantel tests have been used to

analyze DNA fingerprinting data to address these types of questions.  The ability to

quantitatively compare microbial communities is an important step toward more sensitive

monitoring, and eventually, being able to integrate data gathered by different researchers

so that overall patterns may be identified.  It is important that microbial ecologists
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become more aware of the availability of these techniques, and consider their use when

analyzing and interpreting microbial community data.  

Because the DNA fingerprinting data collected as part of this dissertation research

were multivariate and binary (presence or absence of bands), the direct application of

traditional geostatistical variogram analysis was not possible.  However, by converting

the DNA fingerprinting data into similarity and dissimilarity matrixes, and then applying

a variogram analysis to these matrices, a great deal of information on the spatial patterns

of these assemblages was obtained.  Using this pseudo-variogram approach, it was

possible to determine the correlation length scales (“range”) of the microbial community

and the spatial dependence (the percent of variance in the data that may be due to spatial

autocorrelation structure).  A great deal of spatial autocorrelation in microbial community

structure was detected, and different microbial community attributes (e.g., abundance

versus community structure) displayed different spatial patterns (Chapters 6 and 7).

Changes in these different community attributes were correlated with changes in different

environmental variables, which had different spatial patterns (Chapter 8). This

demonstrates that the analysis of a single community property is not sufficient to

determine the important environmental variables controlling the development and

organization of a microbial assemblage.  

The work presented here also demonstrated that a great deal of the variance

observed in microbial community structure at the cm to 10-m scale may be due to spatial

autocorrelation; the values obtained indicate that between 9 and 73 % of the variance

could be explained by considering the spatial separation of sampling locations.

Understanding the amount of variance in a dataset that is due to spatial autocorrelation
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may be particularly important is situations where one is trying to develop models to

explain the relationship of microbial community structure, diversity, or function, to

fluctuations in various environmental properties.  For example, one may develop a model

using three environmental variables, and discover that only 50 % of the variance in

community structure is explained.  By determining the amount of variance that is due to

spatial autocorrelation, a researcher can better decide the value of examining more

environmental properties and searching for other causes of community variability.  If a

large portion of the remaining variance may be accounted for by considering the spatial

separation of sampling locations, then it may not be necessary to consider other physical

or chemical properties that could be influencing community structure.  However, if little

spatial structure is detected, further investigation of additional environmental variables

may be appropriate.  Another advantage to including data on spatial structure in

ecological analyses and models such as these is that much better predictions may be

obtained when the spatial structure is included among the predictive variables (Legendre,

1993).

The results of a geostatistical analysis may provide the basis for interpolation by

kriging, and therefore allow for the production of maps displaying the spatial distribution

of community structure at sampled and unsampled locations.  These techniques are

particularly valuable because the methods may be applied to environmental data, and the

distribution of the community may be compared with the physical-chemical habitat

variation at a site (Chapter 8).  The same approach may be used to generate maps of

community function (e.g., uptake of a particular substrate), which would be particularly

valuable for predicting/calculating overall community activity in an area.  
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9.2.2. Significant spatial autocorrelation exists in microbial community
structure, even in environments that may seem “homogeneous”.  This
structure can manifest at many different nested scales, and may
influence analysis of microbial community patterns.  

The presence of spatial autocorrelation in microbial systems has been

demonstrated by a number of researchers, as outlined in the Chapter 1 of this document.

The results presented in this dissertation are consistent with this earlier work, and help to

confirm the notion that spatial autocorrelation is a generic feature of ecosystems that

needs to be considered when examining patterns of microbial community structure and

function.  Even in the agricultural field (predicted to be the most homogeneous site), a

great deal of multi-scale spatial autocorrelation was detected.  The fact that spatial

autocorrelation was so widespread, across such a range of scales and in so many different

types of environments, further supports the claim that spatial variability needs to be

considered when making inferences about ecological relationships and when developing

strategies to sample the environment (Robertson et al., 1997).  The identification of such

patterns can influence the selection of statistical techniques used for data analysis, and

failure to compensate for autocorrelation can lead to incorrect statistical conclusions.

Moreover, the results of the present research indicate that one’s conclusions regarding the

factors that are important for controlling community structure in a system can indeed

change depending upon the analytical scale considered (even within the range of cm to 10

m). 

The importance of spatial structure in experimental design and statistical analysis

is frequently commented on, but rarely examined.  Despite increasing recognition of the

importance of spatial autocorrelation in environmental samples, most microbial
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ecologists still do not consider this aspect when designing a sampling scheme.  A review

of more than 50 papers published in major journals between 1993 and 1995 showed that

when researchers studying microbial properties in the field actually specified their

sampling design (which was only 63% of the papers), a random sampling pattern or

random transect was used 96% of the time (Morris and Boerner, 1999).  However, if

microbial properties are as strongly influenced by small-scale environmental variability

as is currently suspected, then the habitat is not structured randomly, and the use of

random transects may not be appropriate (Legendre et al., 1989).  

Some procedures exist that allow researchers to make corrections and perform

statistical analyses in the presence of spatial autocorrelation – but these corrections are

often difficult to perform, and their efficacy is uncertain (for an overview, see Dutilleul

and PinelAlloul (1996), Legendre and Legendre (1998), and Legendre et al. (1990)).  In

some cases, it may be possible to remove large-scale spatial structures from a dataset by

regression or model-fitting, in order to carry out classical statistical analyses on the

residuals.  However, in doing so, one must be careful not to remove one of the important

determinants of the processes under study, since spatial heterogeneity may be functional

in ecosystems (Legendre and Fortin, 1989).  Another solution to deal with natural spatial

autocorrelation is to design a sample collection scheme so that there is little spatial

structure present in the data, and then use parametric statistical hypothesis tests.  In this

case, samples must be collected close enough together that they represent replicates of the

system under investigation, but they must be far enough apart to avoid autocorrelation.

This approach requires prior knowledge about the spatial patterning of the variables,

obtained from previous surveys or a pilot study.
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Regardless of which approach one chooses (correction of statistical procedures or

modification of experimental design), it is first necessary to describe the type of

autocorrelation present in a system (e.g., gradients versus patches) and then estimate its

extent.  However, because it is not always feasible to first do an extensive reconnaissance

survey, and because the results presented in this dissertation suggest that one is not likely

to avoid the impact of spatial autocorrelation, a more reasonable solution may be to

include spatial separation as a part of routine data collection.  An initial analysis of this

information can then be used to determine the influence of spatial autocorrelation on the

dataset.  If significant spatial structure is found, this information must be considered as a

variable and incorporated into subsequent data analysis; if not, traditional parametric

techniques may be appropriate. 

9.2.3. Different portions/subsets of the microbial community may be
spatially distributed in different ways, and in response to different
environmental variables.

Significant spatial autocorrelation in microbial community structure was observed

for both the salt-marsh creek bank sediments and the agricultural wheat field (Chapters 6

and 7).  Moreover, the results of the wheat field study demonstrated that different subsets

of the microbial community were distributed in different ways, and this was found to be

due to the differential response of these community subsets to various environmental

properties (Chapter 8).  In particular, three community subsets were examined.  All three

groups were influenced by changes in soil CN availability, one group was also influenced

by changes in OM concentration, and another group was influenced by changes in soil
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texture (as well as CN).  As a result, the spatial distribution and autocorrelation structure

associated with each community subset was distinct.  

These data imply that different groups/types of organisms may respond differently

to environmental stress and perturbation; therefore, to build a true picture of the impact of

these disruptions, it may be necessary to examine several components of the community

(and ecosystem).  These results also demonstrate that researchers must be especially

careful when comparing separate community-environment studies that use different

assays to evaluate community structure, as the findings may change considerably

depending on the portion of the community actually evaluated.  This is particularly

important, considering that the different techniques available to characterize microbial

community structure are each biased toward particular portions of the microbial

community.  For example, traditional microbiological methods are selective for

microorganisms that are capable of growing on culture media, community-level

physiological profiling (CLPP) may be biased toward faster growing organisms, and the

numerous molecular genetic methods may provide very different results depending on

changes in nucleic acid extraction procedures, PCR conditions and primers, or the

resolution associated with a particular technique.  Analyses using these different

techniques may be expected to provide similar overall results (e.g., separation of distinct

communities using PCA, as discussed in Section 9.1.2), but may not be as well matched

when analyzed in more detail using geostatistical techniques.  Therefore, studies that use

statistical techniques to compare spatial variability, community structure, and

environmental variability are more likely to generate different results when different

methods are used to characterize community structure.  Further research that focuses on
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creating multiple maps of the community structure in an area, using different laboratory

methods to analyze the communities, would prove some information of the magnitude of

this discontinuity.  

9.2.4. Sample size may be a more important consideration when analyzing
microbial community structure, compared to overall community function.

The relative scales between what constitutes the size of a habitat required for a

prokaryote, and the size of samples typically taken for observation in environmental

studies, is an important consideration that has motivated much of the research presented

in this dissertation. Though this is a very important element of spatial analysis and the

consideration of spatial relationships in microbial communities, experiments addressing

the issue of sample size did not constitute a large portion of this dissertation research.

Nonetheless, some conclusions may be drawn from the dilution/regrowth experiments,

and a general discussion of this issue is appropriate.   

The results of the laboratory studies indicate that the sample size used for

community analysis may be a very important consideration when examining overall

community structure, but is less of an issue when comparing community function.

Moreover, differences in microbial community function could not be inferred from

observed differences in community structure, and this is likely due to the widespread

functional redundancy present in microbial systems (to be discussed in Section 9.3).  The

impact of sample size on the perception of microbial community structure and activity

depended on the relative distribution of the organism types within the meta-community.

If the community has a relatively even distribution (approximately equal numbers of each
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type), then changes in sample size will not necessarily lead to changes in the perceived

community structure – until the sample size is so small that the number of organisms

collected is less than the richness present in the largest sample size.  This result was not

particularly surprising, and implies that differences in community structure will be only

detected when samples sizes differ by several orders of magnitude.  However, the results

indicate that very large differences in community structure may be observed over

relatively small intervals (e.g., 0.1 ml to 1 ml) if the community is not evenly distributed. 

Other researchers have also determined that changes in sample size may influence

the analysis of microbial community structure (Ellingsoe and Johnsen, 2002; Kirchman et

al., 2001; Long and Azam, 2001) and abundance (Duarte and Vaqué, 1992; Mitchell and

Fuhrman, 1989; Muller-Niklas et al., 1996; Seymour et al., 2000).   For example, in forest

soils, Ellingsoe and Johnson (2002) observed a great deal of variation in genetic

community structure when comparing DGGE fingerprints created from replicate 0.01 g

samples.  Variation was also observed between 0.1 and 1.0 g samples, whereas variation

between 1.0 and 10.0 g samples was negligible.  Work examining variation in community

function in association with changes in sample size has also been performed, but to a

lesser extent (Parkin et al., 1987).  The results presented in Chapter 4 are the first where

the influence of sample size on both community structure and activity has been

considered.  The results demonstrate that sample size and spatial heterogeneity are

important factors, as other researchers have determined, but that community composition

(specifically, the distribution of types) and the level of functional redundancy present in

the system may also influence the results of such an analysis
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One important factor controlling the sample size used in microbiological analyses

is the limitations imposed by analytical requirements.  However, advances in molecular

genetics, image analysis, and micromanipulators make this less of an issue.  For example,

Kirchman et al. (2001) achieved positive PCR with as little as 25 µl of coastal water.

Theoretical calculations suggest that even smaller samples may be used (Franklin et al.,

1999).  Despite a recent increase in research associated with the issue of sample size and

understanding how our perception of the composition and distribution of a microbial

community changes when different spatial extents are considered, there is still no

consensus as to what factors are most important for determining the appropriate sample

size for a particular environment or set of ecological questions.   

One point that is so fundament to the topic of microbial communities that it is

often overlooked is the question of how to define the limits of a microbial community.

Most often, the boundaries used to define a ‘community’ are utilitarian and dictated by

the required sample size and the researcher’s perception of environmental variability.

The size of the sample is crucial, because it determines the number of bacteria that will

be subjected to the same sample processing.  Generally, the “mere fact that organisms co-

exist at the moment of sampling is taken as evidence that they are part of a community…

(while) the ‘community’ may be no more than a disparate collection of organisms that

happen to found within a sample of a particular size” (Harris, 1994).  

In the environment, it is difficult to delimit microbial communities (impossible in

most situations), and separate the cells and species that are members of a community

from those that are not.  Functionally defined microbial communities exist in continuity

with one another, and the distinctions between them blur.  These “communities” are
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functionally connected by fluxes of organisms, materials, energy, and information.  The

localized activity of these individual “unit” communities combines in a mosaic pattern to

mediate processes that are important at the field and landscape scale.  Moreover,

microbial activity at the ecosystem level results from the further combined interaction of

these larger-scale communities.  One’s perspective within this hierarchy can be crucial to

understanding the pattern or process of interest, and studies that consider multiple spatial

scales when studying environment-community interactions are particularly valuable.  It is

important to point out that most systems cannot be neatly subdivided into hierarchical

scales of organization, and there is no single natural scale on which ecological

phenomena should be studied (Levin, 1992).  The description of the system will vary

with the choice of scales, and, rather than trying to determine the “correct” scale,

ecologists must try to understand how the system description changes across scales

(Levin, 1992).  Moreover, learning to scale up from individual measures of

environmental samples to processes at the field and landscape scale requires an

understanding of how information is transferred from fine scales to broad scales – this

requires that scientists learn to aggregate and simplify, retaining essential information

without getting bogged down in unnecessary detail (Levin, 1992).  

9.3. Conclusions regarding the relationship of microbial community structure and
function

9.3.2. Functional differences in microbial communities cannot be inferred from
observed differences in community structure. 

There is a considerable lack of knowledge regarding the relationship of microbial

community composition and community physiological activity. Although it is frequently
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proposed that there is a tight link between the two in microbial systems (Finlay et al.,

1997; White, 1995), the research presents conflicting results (Atlas et al., 1991; Eddison

and Ollason, 1978; Mills and Mallory, 1987; Salonius, 1981; Wassel and Mills, 1983;

Xing et al., 1997).  The results included in this dissertation demonstrate that there can be

changes in the structure of a microbial community that are not necessarily reflected by

changes in the function of the community.  More specifically, the dilution/regrowth

procedure discussed above was used to create communities that differed in both overall

structure and diversity.  These communities were incubated in the same environmental

conditions, and the in situ function of the communities was observed by examining the

community heterotrophic uptake for five different 14C labeled compounds.  There were

no significant differences between treatments in either the rate of uptake of a substrate or

the assimilation efficiency for any of the compounds studied.  This finding demonstrates

that it is not necessarily appropriate to draw conclusions regarding changes in community

function from an analysis of community structure, and is particularly important given the

extensive use of structural assays in ecological studies of microbial systems.  

One of the limitations of this study is that community function was only

determined for a small group of substrates.  However, the compounds were chosen to

represent a range of different types of chemical groups: amino acids, short and long-

chained carboxylic acids, and carbohydrates.  It is certainly possible that differences in

function might have been found if the communities had been presented with more exotic

compounds.  There is considerable debate among ecologists as to what processes should

to be chosen to best characterize ecosystem or community functioning (Ghilarov, 1997;

Gitay et al., 1996), and the study reported here only addresses the metabolic uptake of a
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small group of compounds.  Ideally, a more complete analysis of the function of

microbial communities would include measures of other compounds and processes, and

would also evaluate community stability (resistance and resilience).  There is some

evidence that suggests that well-defined microbial functions such as nitrification and

methane oxidation, which are carried out by a limited microbial sub-set, may be more

sensitive to changes in diversity than broader-scale functions such as respiration or

decomposition (Griffiths et al., 2000; Toyota et al., 1999; Wu et al., 2002).  Kandeler et

al. (1996) also showed that carbon cycling may be less sensitive to changes in microbial

community composition than nitrogen and phosphorus dynamics.  

There are a number of other studies that have also found that the broad-scale

functional ability of a microbial community is often not controlled by organism diversity

or community structure (Andrén et al., 1995; Finlay et al., 1997; Griffiths et al., 1997,

2000 and 2001; Mills et al., 2003; Salonius, 1981; Toyota et al., 1999).  However, despite

the fact that structural assays of microbial communities are not necessarily useful for

determining these types of changes in community function, there are still a number of

ways in which structural analyses may be useful.  In particular, an analysis of community

structure may be helpful for predicting changes associated with other aspects of

community function (e.g., stability), or could be useful as an indicator of environmental

change.  For example, Boon et al. (2000) examined DGGE fingerprints of microbial

community structure in samples collected from different depths in a sediment landfill,

and concluded that DGGE was a more sensitive means of characterizing environmental

habitat variability than the standard physical-chemical approach.  Statistical analysis of

the physical-chemical data revealed no significant differences or clustering patterns
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associated with depth into the landfill; however, the molecular methodology uncovered

consistent and reproducible differences in the banding patterns associated the less

dominant bacterial species in different regions of the landfill. 

The results presented in this dissertation also demonstrate that changes in

community structure may occur is association with different environmental conditions;

however, it remains to be determined how/if this change in structure will manifest as a

change in microbial community function.  At this point, it is not possible to extrapolate

information about microbial community function from an analysis of the structure of a

community.  However, the fact that there is consistently a link between community

structure and environmental variability (i.e., in this study, different environments always

have communities with different structures) indicates that there probably is a relationship

between structure and function, but it is not something that can be detected or explained

at this point.  Increased research into the relationship between structure and function is

necessary before scientists can anticipate how habitat disruption and changes in

community structure may impact community activity and ecosystem performance, and a

better understanding of the role of spatial heterogeneity in microbial communities will

help ecologists to determine the relevance of small-scale observations and experiments

for large-scale patterns and processes.  Analysis of these relationships over a variety of

spatial scales is important because evidence of diversity-function relationships at local

scales cannot necessarily be directly extended to regional scales (Hughes and Petchey,

2001).
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9.3.3. Functional redundancy may be widespread and an important factor
controlling the stability of microbial communities.

In the dilution/regrowth experiments discussed above, the fact that community

function was maintained, despite the loss of diversity and change in community structure,

indicates that functional redundancy was quite high within the original microbial

consortium.  For each organism type eliminated by the dilution procedure, at least one of

the remaining organism types was able to provide the same function, at the same level, as

the lost type.  In general, microbial communities are thought to possess a high degree of

functional redundancy, which refers to the situation in which many species within an

ecosystem are capable of carrying out the same individual function (Roberts et al., 2003).

Several researchers have speculated that this redundancy in function is much more

important for understanding the stability of microbial communities, and of the ecosystem

functions they perform, than traditional diversity measures (Beare et al., 1995; Finlay et

al., 1997; Kennedy and Smith, 1995; White, 1995).   The hypothesized relationship

between functional redundancy and stability within ecosystems is conceptually similar to

a cybernetic control mechanism called "congeneric homotaxis" (Hill and Wiegert, 1980).

In this case, stability is conferred on a system because multiple genera are capable of

carrying out a given function in the ecosystem, presumably across a wide range of

environmental conditions. If one of the organisms is eliminated from the system, or if the

organism ceases to function for any reason, another organism present within the system

(one that is “ecologically equivalent” (Gitay et al., 1996)) provides the function, allowing

maintenance of the system’s functional ability at or near the level prior to the loss of the
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first organism.  This redundancy is often though of as an insurance again the loss of

function from a community.  

The results presented in this dissertation indicate that functional redundancy may

be widespread among microbial communities, and may be an important factor controlling

the functional stability of these assemblages.  However, it is important to point out that

there are several reasons why overall ecosystem functioning may not be maintained even

in a community that is redundant with respect to each individual function.  For example,

though multiple populations may be capable of performing a function, they may not all

perform it with the same efficiency, or they may not generate the same metabolic by-

products.  Similarly, a “replacement” species may not have the same growth rate or

competitive ability as the original community member.  Changes such as this could

influence the activity of other populations in the community, and indirectly cause a

change in overall ecosystem function, despite the fact that the original function of interest

has been maintained (Chapin et al., 1997).  More research is needed to determine whether

the presence of multiple species, with overlapping functional abilities, actually results in

functional stability.  Further research into the relationship between microbial community

structure and function, and the role of functional redundancy in these systems is an

important first step toward determining whether it is possible to control microbial

communities in a manner that will help scientists manage the stability, function, and

quality of an ecosystem as a whole. 
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9.4.  Final comments

While increased knowledge of the many factors influencing microbial community

structure, and the role of space and time in this relationship, is important, there is

particular interest in understanding how these factors may affect the activity of

microorganisms in an ecosystem.  Microorganisms play a fundamental role in

establishing the biogeochemical cycles necessary for the long-term functioning of

ecosystems.  In addition, microorganisms are primarily responsible for the degradation

and detoxification of many environmental contaminants.  For these reasons, changes in

the composition or activity of microbial communities can have immediate and lasting

effects on ecosystem functioning.  

Increased research into the relationship between structure and function of

microbial communities is necessary before scientists can anticipate how habitat

disruption and changes in community structure may impact community activity and

ecosystem performance, and a better understanding of the role of spatial heterogeneity in

microbial communities with help ecologists to determine the relevance of small-scale

observations and experiments for large-scale patterns and processes.  By characterizing

the spatial structure of microbial communities, the scales at which factors controlling

their development operate may be identified, thus shedding light on the nature of the

factors themselves.  Predictive relationships for assessing the impact of variables such as

management practices or environmental changes on the microbial community, and thus

microbial function, may then be improved.
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