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Abstract 

SEASONAL AND SPATIAL VARIATION IN LEAF AREA INDEX, LITTER 
PRODUCTION, AND LIGHT LEVELS IN MYRICA CERIFERA,SHRUB THICKETS 
ACROSS A BARRIER ISLAND CHRONSEQUENCE. 

Steven T. Brantley, Master of Science 

A thesis submitted in partial Mfillrnent of the requirements for the degree of Master of 
Science at Virginia Commonwealth University 

Virginia Commonwealth University, 2005 

Director: Dr. Donald R. Young, Professor, Department of Biology 

Leaf area index (LAI), litter production and understory light levels of Myrica cergera 

shrub thickets were assessed on Hog Island, Virginia to quantify spatial and seasonal 

variations in leaf area and light attenuation among four thickets representing a 

successional chronosequence and compare methods of estimating LA1 in shrub- 

dominated systems. Seasonal LA1 estimates were made seven times throughout the year 

with a portable integrating radiometer (Li-Cor LAI-2000) and three times by 

measurement of photosynthetically active radiation (PAR) and use of the Beer-Larnbert 

law. Leaf area index was also estimated through leaf litter collection and use of 

allometric relationships between stem diameter and leaf area. The oldest of the four 

thickets had the lowest LA1 and litter production throughout the year. Peak LA1 

measurements with the portable integrating radiometer ranged from 2.0 * 0.2 to 4.0 & 0.3 



for the oldest and youngest thickets, respectively which appear to be substantial 

underestimates of the actual values. According to annual litterfall, LA1 ranged from 4.1 

* 0.5 for the oldest thicket to 10.2 * 0.4 for a 20 year old thicket. Leaf area index varied 

fiom 6.4 * 0.2 for the oldest thicket to 1 1.4 * 2.1 for the 40 year old thicket according to 
I 

the allometric relationships, which may overestimate LA1 in stands with many large 

stems. The high light attenuation by the shrub canopy and heavy litterfall may contribute 

to the low diversity within thicket canopies by inhibiting germination and growth of other 

species. The study demonstrates that these low diversity shrub thickets have a higher 

LA1 and litter production, and thus higher potential for primary productivity, than many 

temperate forested systems and that stand age may be the major determinant of 

productivity. 



Introduction 

Barrier islands represent a highly dynamic landscape and provide unique 

opportunities to study the effects of rapid environmental changes across multiple spatial 

and temporal scales (Hayden et al., 1991). Barrier island plant communities show a 

strong tendency for zonation based on physiological constraints imposed by steep 

environmental gradients (Oosting and Billings, 1942; Ehrenfeld, 1990; Levy, 1990; 

Hayden et al., 1991). Environmental factors, such as availability of fresh water, high 

solar load, low nutrient soils, salinity, wind, and burial by sand, determine species 

composition and the amount of vegetative cover (Oosting and Billings, 1942; Ehrenfeld, 

1990; Levy, 1990; Hayden et al., 1991). The study of key community characteristics 

across the island landscape can provide valuable information on the factors that drive 

ecosystem function. 

Spatial variation in environmental stresses on barrier islands is particularly high 

relative to landscape position (Ehrenfeld, 1990; Levy, 1990). The availability of fresh 

water depends on site topography and is primarily a function of the relative positions of 

the terrestrial surface and the freshwater lens (Ehrenfeld, 1990; Hayden et al., 1991 ; 

Young et al., 1994). Other stresses, such as salinity stress from saltwater flooding and 

exposure to sea spray, decrease with increasing distance from the beach (Oosting and 

Billings, 1942; Boyce, 1954; Young et al., 1994). However, reduced exposure to sea 

spray may also reduce inputs of micronutrients, such as potassium, magnesium, and 

calcium, in inland sites possibly increasing nutrient stress (Art et al,. 1974). 



Temporal variation in community processes and the factors that drive species 

composition is also high due to the dynamic nature of barrier islands. Long-term changes 

include sea-level rise, island migration, and allogenic succession due to climate change 

(Hayden et al., 1991). Long-term changes are accompanied by episodic disturbances, 
I 

particularly coastal storms, that can rapidly cause system-wide changes and alter 

ecosystem trajectory (Hayden et al., 1991). Short-term variations in long-shore currents 

also change accretion and erosion patterns and result in large variations in soil ages as 

beaches expand (Hayden et al., 1991; Shao et al., 1998). 

Accreting shorelines provide one of the few opportunities to study primary 

succession. Succession on newly deposited sand begins with colonization by dune 

forming grasses and development of a primary dune (Ehrenfeld, 1990; Levy, 1990). 

Changes in plant species composition often increase community structure ameliorating 

environmental stresses such as high light levels and wind. As litter accumulates, soil 

organic matter, soil water holding capacity and soil nutrient levels increase, reducing 

water and nutrient stress on older soils (Ehrenfeld, 1990; Levy, 1990). Succession may 

proceed toward development of a maritime forest or the trajectory may be mitigated by 

disturbances such as tropical or extratropical storms, fire, or introduction of an invasive 

species (Hayden et al., 1991; Stalter and Odum, 1993; Stallins and Parker, 2003). 

Formation of primary dunes on accreting shorelines often occurs repeatedly, 

resulting in a series of parallel dune ridges and interdunal swales across an island creating 

a successional chronosequence (Hayden et al. 1991). On the barrier islands of Virginia, 

such as Hog Island (Fig. I), colonizing grasses trap sand in swales increasing elevation 



and reducing frequency of flooding (Levy, 1990). The swales may then be colonized by 

the actinomycete Frankia , a nodulating mycobacterium capable of fixing atmospheric 

nitrogen (Young et al., 1992). Drier sites, inhabited by Frankia, can then be colonized by 

the evergreen shrub Myrica cerifera L. (Myricaceae) which rapidly grows into dense 

thickets (Levy, 1990; Young et al., 1992). 

Commonly known as wax myrtle or southern bayberry, M. cerifera is not tolerant 

of the high levels of salt occurring closer to the shoreline (Tolliver et al., 1997; Young et 

al., 1994). However, these shrubs are well adapted to the low nutrient levels of recently 

deposited sand and are the dominant woody species on many of Virginia's barrier islands 

(Young, 1992). The symbiotic association with Frankia assures an adequate source of 

nitrogen and the evergreen Ieaf habit helps to conserve other nutrients (Monk, 1966; 

Morris et al., 1974; Young, 1992). As the north end of Hog Island has grown, a well- 

defined chronosequence of dense shrub thickets has also formed from west to east across 

the island (Young et al., 1995). The four thickets on Hog Island vary in age and structure 

with the younger sites exhibiting higher stem densities and closed canopies and the oldest 

thicket deching due to an increase in plant senescence, vine growth and gap formation 

(Young et al., 1995; Crawford and Young, 1998a). 

The ecological impact of M. cerifera in coastal environments has been well 

documented. Myrica cerifera plays an important role in coastal succession by improving 

soil nutrient content and acting as a nurse plant to less light-tolerant species such as 

Prunus serotina (Morris et al., 1974; Permar and Fischer, 1983; Levy, 1990). Permar and 

Fischer (1 983) showed that M. cerifera in the understory of Pinus ellotii plantations can 



fix substantial amounts of nitrogen throughout the year improving nitrogen accumulation 

rates in the soil. Myrica cerifera fruits are also a valuable food resource for wildlife, 

especially wintering birds (Borgrnann et al., 2004; Kwit et al., 2004a; Kwit et al., 2004b). 

While much is known about general growth and life-history characteristics of M. 

cerifera, many of the factors that determine photosynthesis, transpiration and net primary 

production (NPP) of shrub thickets have yet to be quantified across complex spatial and 

temporal scales. However, there is growing interest in the increased abundance of shrubs 

in historically herbaceous ecosystems and the effect this shift will have on NPP (Jobbagy 

and Sala, 2000; McCarron and Knapp, 2003; Heisler et al., 2004). Measurement of NPP 

in communities dominated by woody species, including shrub-dominated systems, is 

often difficult due to the size and structural complexity of such communities (Whitaker, 

1961 ; Young, in press). Many recent efforts to estimate NPP have focused on the use of 

remote sensing and computer modeling to simulate production based on light use 

efficiency (Gower et al., 1999). These models have many advantages but reliability 

depends on accurate estimation of vegetation characteristics such as leaf area index 

(Runyon and Waring, 1994; Gower et al., 1999). 

Leaf area index (LAI) is defined here as the ratio of leaf surface area of one side 

of the leaf to projected ground area. Leaf area index is an important structural variable in 

any plant community and can be used as an indicator for a variety of ecosystem processes 

such as photosynthesis, transpiration, and nutrient cycling (Bonan, 1993; Runyon et al., 

1994; Barbour et al., 1999). Leaf area index directly influences both the amount of solar 

radiation that can be intercepted and the plant-atmosphere exchange of COz, thus directly 



affecting NPP (Bonan, 1993; Runyon et al., 1994; Norby et al., 2003). In coastal 

systems, higher leaf area is also important in capturing nutrients from sea spray and 

improving soil nutrient levels (Art et al., 1974; Joy and Young, 2002). 

Leaf area index is also an important determinant of community structure through 

competitive inhibition. In deeply shaded forests, high LA1 can reduce incident light 

levels by 98% or more and light availability may become the primary limiting resource 

for understory plants (Chazdon, 1988; Neufeld and Young, 2003). On Hog Island, 

development of shrub thickets with low light levels and heavy litterfall limits germination 

and seedling growth of resident grasses as well as other herbaceous and woody species 

(Tolliver et al., 1995; Crawford and Young, 1998a). Development of a diverse 

understory under low light conditions is also limited by the seed bank within the thickets 

which is devoid of shade-tolerant plants because it still reflects a pioneer successional 

community (Crawford and Young, 1998b). 

Leaf area index can be estimated either directly using total leaf mass within a plot 

and specific leaf area or estimated indirectly by comparing light above and below the 

canopy (Marshall and Waring, 1986; Welles, 1990; Gower et al., 1999; Turner et al., 

2000). Direct estimates use annual litterfall, destructive sampling of representative plots, 

or allometric relationships between stem size and leaf area (Marshall and Waring, 1986; 

Gower et al., 1999; Turner et al., 2000). Estimation of LA1 using annual litterfall is the 

most time consuming method, especially in evergreens, and may require several years of 

data due to interannual variability (Marshall and Waring, 1986; Gower et al., 1999). 

Specific leaf area can also vary substantially within layers of the canopy due to variation 



in sun exposure (Gower et al., 1999). Other forms of direct estimation may require large 

amounts of destructive sampling and are cumbersome for all but short-statured 

communities (Gower et al., 1999). 

Allometric relationships are often developed for woody co~lmunities to take 

advantage of the strong relationship between stem size and leaf area (Marshall and 

Waring, 1986). Rather than harvesting entire plots or stands, allometric models require 

harvest of a subsample of stems that represent the range of stem sizes found in a stand 

(Gower et al., 1999). The primary disadvantage of allometric modeling based on stem 

diameter is that LA1 for stands with many large stems often tends to be overestimated 

(Marshall and Waring, 1986; Turner et al., 2000). Alternatives to stem diameter, 

including stem cross-sectional area and sapwood area, have been suggested to reduce 

overestimates of LA1 (Marshall and Waring, 1986; Turner et al., 2000). Allometric 

modeling of LA1 in shrubs may also be complicated by variations in trunk morphology 

that may make consistent diameter measurements difficult. 

Indirect estimation of LA1 is accomplished either by measuring canopy gap 

fraction or light attenuation (Marshall and Waring, 1986; Welles, 1990; Gower et al., 

1999). Measurement of gap fraction using a portable integrating radiometer, such as the 

Li-Cor LAI-2000, is often the quickest method to gather many LA1 estimates with a 

minimum of effort. However, there are several disadvantages to using such instruments. 

Calculation of LA1 from gap hct ion is based on two assumptions rarely met in natural 

systems: random distribution of foliage in the canopy and spherically arranged leaf 

angles (Welles, 1990; Gower et al., 1999). Additional error may be introduced fiom 



rapidly changing sky conditions or from light interception by stems, although error from 

light interception by stems depends largely on seasonality and the presence or absence of 

dead stems (Gower et al., 1999). Additionally, for best results sensors should not be 

exposed to direct sunlight so these instruments are best used when solar angle is low or 

the sky is overcast (Welles, 1990). 

The second indirect method commonly used to estimate LA1 utilizes the Beer- 

Lambert law, a light extinction coefficient and two measurements of photosynthetically 

active radiation or PAR (one measurement above the canopy and one measurement 

below the canopy) (Marshall and Waring, 1986; Welles, 1990; Gower et al., 1999). The 

Beer-Lambert law is also based on the assumptions of randomly and spherically arranged 

leaves (Marshall and Waring, 1986; Welles, 1990; Gower et al., 1999). To improve 

consistency, measurements of solar radiation for estimating LA1 should be taken on 

cloudless days to reduce variation in levels of reflected and diffuse light (Gower et al., 

1999). Light measurements should also be taken within two hours of solar noon because 

light extinction coefficients vary with solar angle (Pierce and Running, 1988; Norby et 

al., 2003). Both light attenuation and gap fraction methods require above-canopy 

readings for each estimate of LA1 which may be difficult without large enough gaps in 

the canopy. 

Leaf area index is a key structural parameter in terrestrial ecosystems and reliable 

estimation is important as an indication of ecosystem function and for ground truthing of 

remote sensing equipment. Comparison of LA1 across dynamic landscapes can also 

provide valuable information about trends in habitat development and the effects of 



environmental gradients but estimates of LA1 must be accurate, repeatable, and efficient 

for long-term monitoring to be supported. Characteristics directly related to LAI, such as 

litter production and understory light levels are also important indicators of nutrient 

cycling, competition and other factors driving succession. The objective of the current 

study was to quantify variation in leaf area index, litter production and light levels in four 

Myrica cerifera shrub thickets across a successional chronosequence. Leaf area index 

was estimated using a commercially available plant canopy analyzer, annual litterfall, 

light attenuation, and allometric modeling and compared among thickets. Seasonal 

variation in LA1 and litterfall rates were used to determine differences in the timing of 

leaf development and leaf loss among the thickets. Light levels within thickets were 

quantified to determine the role of understory light levels in the lack of diversity within 

thickets. This study demonstrates the complex and interacting effects of succession and 

steep environmental gradients on the primary production potential of a shrub-dominated 

community. 

Methods and Materials 

Study site 

Field work was conducted from April 2004 to April 2005 on the northern end of 

Hog Island (37" 27' N, 75" 40' W), VA, a barrier island located approximately 10 km 

east of the Eastern Shore of Virginia, USA (Fig. 1). Hog Island is -1200 ha, 10 km long 

and 2.5 krn across at its widest point. The island is part of the Virginia Coast Reserve, 



managed by the Nature Conservancy, and is a Long-Term Ecological Research (LTER) 

site. The northern end of the island has been accreting -5 m yr-l on the ocean side for 

-140 years resulting in a chronosequence of progressively younger soils as one moves 

east fiom the bayside marsh to the ocean (Hayden et al., 1991; Shao et al., 1998) (Fig. 1). 

As the beach has accreted, a parallel series of dunes and swales has developed running 

north to south with a distinct zonation pattern and sharp transitions between vegetation 

types. While dunes are dominated by the grasses Ammophila breviligulata, Spartina 

patens, and Panicum amarum, swales are dominated by dense thickets of the evergreen 

shrub Myrica cerifera (Young et al., 1995). 

The four extant thickets on the North end of the island represent a range of ages 

and successional stages. The oldest site, the Bay Side thicket, has previously shown poor 

recruitment and high mortality (Young et al., 1995). The second, or Mid-Island thicket is 

located in the most stable part of the island and forms a nearly impenetrable thicket 

(Young et al., 1995). The third site, or Young thicket is located -300 m fiom the 

shoreline, just behind a large and relatively young (-30 yr. old) dune. The easternmost 

site, or Colonizing thicket, lies just 200 m fiom the shoreline and contains discontinuous 

but dense patches of relatively young (-4 0 years) shrubs. 

Seasonal litter and leaf area index measurements 

To quantify spatial variation in litter production and leaf area index, ten sites 

within each thicket were selected using a stratified baseline technique. A baselihe was 

established parallel to each thicket and transects were established every 25 m along the 



baseline. Two sites were selected along each transect using random numbers to 

determine the distance along the transect at which traps would be placed. All sites were 

established at least 3 m into the thicket to avoid edge effects. A plastic litter trap, -0.30 

m2 in area and 0.15 m deep, was placed at each site in early April 2004. Litter was 

collected seven times throughout the year from May 2004 to April 2005. Litter was dried 

at 75 "C for four days, separated into leaf, woody and reproductive components, and 

weighed to the nearest 0.1 g. 

To determine specific leaf area (SLA), 80 leaves were selected from eight stems 

2.0 cm in diameter or larger. The area of each leaf was determined by tracing the leaf 

onto paper of a known mass per unit area and weighing leaf tracings to the nearest 0.001 

g. Leaves were dried for four days at 75 "C and weighed to the nearest 0.001 g. Specific 

leaf area for each leaf was calculated by dividing leaf area by leaf mass and average SLA 

was determined. Annual leaf litter production was then used, along with specific leaf 

area, to estimate peak LA1 for each thicket. 

During each litter collection, leaf area index (LAI) was estimated with a portable 

integrating radiometer (Li-Cor LA1 2000). The LAI-2000 estimates LA1 based on 

measurements of canopy gap fraction using five photodiodes arranged in concentric 

circles with each diode measuring light at a different angle (Welles, 1990). One above- 

canopy and three below-canopy readings were taken at -1 m above each litter trap to get 

an accurate spatial average for the site and more thoroughly relate litter production to 

LAI. 



Seasonal litter data and LA1 estimates fiom the LAI-2000 were analyzed using 

two-way ANOVA to test for interactions between location and season. Post-hoc 

comparisons (Tukey-HSD) were used to test for significant differences among thickets 

and among seasons. ANOVA was performed in SPSS 11.5 for windows. Post-hoc 

comparisons (Tukey-HSD) were performed as described in Zar (1999). 

Seasonal measurement of understory light 

To quantify the understory light environment in the thickets, Li-Cor quantum 

sensors and LI-1400 data loggers were subjectively placed in each thicket for two-week 

intervals during the summer solstice, winter solstice and spring equinox. Incident PAR 

was measured every 5 rnin. and the minimum, maximum and integrated hourly values 

were recorded. Integrated light levels (mol m*2 day-') were compared to above-canopy 

light readings from the Hog Island and Oyster meteorological stations (Krovetz et al., 

2004). The percentage of above-canopy light was determined for each site from the total 

daily integrated light readings for each day of the sampling period. LAI was also 

calculated as described in Marshall and Waring (1986) and Pierce and Running (1988) 

using the Beer-Lambert Law: 

LA1 = -ln(QdQa) k-' 

where Q, is above canopy light, Qb is the below canopy light and k is an extinction 

coeflicient. An extinction coefficient of 0.60 was selected based on Maass et al. (1995). 

As with gap fractions, calculation of LA1 based on the Beer-Lambert Law assumes that 

leaves are randomly distributed in the canopy and that leaf angles are spherically and 



randomly arranged (Marshall and Waring, 1986; Pierce and Running, 1988). Only values 

within one hour of solar noon on days with full sun were used in the calculations for LAI. 

Allometric method for estimation of leaf area index 

To estimate leaf area index using the relationship between stem size and leaf area, 

three 50 m2 plots were delineated in each thicket (25 m2 in the Colonizing thicket) and 

the diameter of all live stems within each plot was measured at 0.7 m height fiom the soil 

surface. Seven to ten stems were selected fiom each thicket to represent the range of 

sizes measured in the plots. All leaves were removed fiom each stem and dried for five 

days at 75 "C. Dried leaves were then weighed to the nearest 0.1 g. Leaf mass and stem 

diameter data were log transformed to correct for the effects of heteroscedasticity (Gower 

et al., 1999; Zar, 1999). Transformed data were analyzed using simple linear regression 

and a predictive model was created for each thicket to estimate leaf mass based on stem 

diameter: 

where L, is the mass of leaves expected from a stem of a given size, c is a constant, m is 

the regression coefficient, and Ds is the stem diameter. The regression coefficients and 

elevations of the four models were then compared as described in Zar (1999) to test 

whether individual models were significantly different fiom one another and possibly 

determine whether all data should be combined into a single model. 

Using the individual models, total leaf area for each plot was calculated using the 

allometrically derived leaf mass values for all stems within a given plot and the specific 



leaf area. Leaf area index was estimated by dividing the total leaf area by the area of the 

plot. A one-way ANOVA was performed on the allometrically derived values of LA1 to 

detect significant differences among thickets. Post-hoc comparisons (Tukey-HSD) were 

performed among thickets. Variation in stem density among the thickets was also 

analyzed using ANOVA and Tukey-HSD. All statistics were performed in SPSS 11.5 for 

windows unless otherwise noted. 

Results 

Spatial and seasonal variation in leaf area index and litter production 

Based on estimates from the LAI-2000, LA1 varied substantially throughout the 

year. Minimum LA1 for all four thickets occurred during April and early May and 

maximum LA1 values at all sites occurred from late June through September (Fig. 2). 

There was also a significant interaction between site and season (F = 3.064, P < 0.001). 

Leaf area index for the Bay Side thicket was significantly lower than LA1 for Mid-Island 

and Young thickets throughout the year. However, LA1 for the Bay Side thicket and 

Colonizing thicket did not differ significantly during May (P > 0.05) but was 

significantly (P 5 0.05) higher for the Colonizing thicket from June to April. 

Rates of leaf litter production also demonstrated significant seasonal and spatial 

variation. Litter production increased significantly (P < 0.05) for all thickets from early 

May to late June (Fig. 3). Lowest leaf litter production for all thickets was observed from 

late June to mid-August. Litter production increased significantly (P < 0.05) for all four 



thickets beginning in late September (Fig. 3). There was a significant (F = 8.221, P < 

0.001) interaction between site and season. The Mid-Island thicket had the highest leaf 

litter production of the four thickets during the late spring pulse but litter production in 

this thicket did not increase as substantially in the fall indicating higher levels of leaf 

retention throughout the winter when the other thickets lost a large proportion of leaves. 

Annual leaf litter production of M. cerifera per unit area varied significantly (F = 

54.87, P < 0.001) among the thickets. Annual leaf litter production rates were 270.4 * 
32.0 g rn2 yr-' for the declining Bay Side thicket, 512.7 * 18.9 g m2 yr-' for the Mid- 

Island thicket, 678.4 * 27.1 g m2 yr-' for the Young thicket, and 663 -4 & 22.3 g m2 yr-' in 

the Colonizing thicket. The Bay Side thicket produced significantly less leaf litter (P < 

0.001) than the Mid-Island thicket while the Mid-Island thicket produced significantly 

less leaf litter (P < 0.001) than the other two thickets. The Colonizing and Young 

thickets did not differ significantly (P = 0.976) from one another in annual leaf litter 

production. 

Spatial and seasonal variation of understory light 

The understory light levels within Myrica cerifera thickets demonstrated spatial 

and temporal variation concurrent with the patterns observed in LA1 and litter production 

(Fig. 4). For the current study, photosynthetically active radiation (PAR) measurements 

represent the range of values measured over several days at a single site rather than a 

spatial average for the thicket and, therefore, were not statistically tested. During late 

June and early July integrated PAR in the Bay Side thicket, which had the most open 



canopy of the four sites, varied from 1.62 rnol mm2 day-' to 3.68 rnol mm2 day" while 

above-canopy PAR varied from 19.5 to 43.7 rnol m'2 day-' depending on cloud cover. In 

contrast, understory PAR in the Colonizing thicket varied from 0.18 rnol m2 day-' to 0.33 

rnol mm2 day-'. Maximum understory PAR in the Mid-Island and Young thickets was 
i 

0.5 1 rnol m-2 day-' and 2.77 rnol m-2 day-' respectively. Despite the seasonal decrease in 

LA1 during the winter, light levels under the canopy decreased during the winter solstice 

due to lower levels of incident PAR (Fig. 4). In spring, integrated PAR within the Mid- 

Island thicket and Colonizing thicket increased to 5.07 and 6.1 1 rnol m-2 dayq1, 

respectively due to the minimal seasonal LA1 coupled with the increased solar angle and 

resultant increase in incident PAR (Fig. 4). 

Short-term temporal patterns of light within thickets also varied among sites in 

summer (Fig. 5). Maximum PAR measurements within the Bay Side thicket were as high 

as 14 1 3 umol mm2 s-' and reached levels exceeding 1 00 umol m-2 s-' multiple times 

throughout the day, indicating that substantial direct solar radiation was reaching the 

thicket understory. Light levels in the Young thicket also exceeded 100 umol m-2 s-' 

during the middle of the day although maximum light levels were lower than those in the 

Bay Side thicket. Light levels within the Mid-Island thicket were consistently lower than 

levels in the Bay Side or Young thicket and rarely exceeded 100 umol m-2 6'. The 

Colonizing thicket had the most deeply shaded environment with maximum PAR below 

-2 -1 -2 1 30 umol m s the entire day with one exception when PAR reached -200 urn01 m s' . 



Stem density and size class jiequency 

Stem density in Myrica cerifera thickets varied significantly (F = 8.771, P = 

0.007) according to thicket age. Younger thickets had higher stem densities andlor a less 

diverse age structure than older thickets (Fig. 6). Stem density in the Colonizing thicket 

was the highest of the four thickets with 3.51 * 0.21 stems m-2. Nearly 40% of stems in 

the Colonizing thicket were < 20 mm in diameter and this site contained no large stems 

(>I00 mm). The Young thicket had a significantly lower (P = 0.049) stem density than 

the colonizing site (1.90 * 0.61 stems m-2) with few large stems and many small, dead 

stems indicating self-thinning. The low frequency of small stems also showed that there 

was a lack of recruitment. There were 1.96 0.28 stems m-2 in the Mid-Island thicket 

and this thicket contained the largest stems of any site. The Bay Side thicket had the 

lowest stem densities (0.98 * 0.03 stems m-2) although it did not differ significantly fiom 

the Mid-Island or Young thicket (P  = 0.278 and 0.324, respectively). The Bay Side and 

Mid-Island thickets each had a very diverse age structure with a relatively high frequency 

of large stems (> 100 rnm). Both had a relatively high frequency of stems <20 mrn 

indicating high levels of recruitment. 

Leaf area index 

Leaf area index according to the portable integrating radiometer ranged fiom 1.9 

* 0.1 for the Bay Side thicket to 3.9 * 0.1 for the Young thicket during late June (Table 

1). Leaf area index estimates using light attenuation and the Beer-Lambert law 

demonstrated similar seasonal and spatial patterns of variation but were generally much 



higher than estimates made with the portable integrating radiometer (Table 2). Light 

attenuation showed that the Colonizing thicket had the highest LA1 of the four thickets in 

late June and early January, while in April, the Colonizing Site had a slightly lower LA1 

than the Mid-Island thicket. The Bay Side thicket had a lower LA1 than either Mid- 
I 

Island or Colonizing thickets in late June and early January. Leaf area index estimates in 

the Young thicket were very similar for both indirect methods during June. A more 

complete analysis of seasonal variation in the Bay Side and Young thickets could not be 

accomplished using light attenuation due to damage to some of the sensors incurred 

during the course of the study. 

Results from allometric models varied significantly (F = 4.126, P = 0.048) among 

thickets (Table 3). Four models, one for each thicket, were derived from the stem 

diameter-leaf area relationships (Table 3 and Fig. 7). There were no significant 

differences (P > 0.05) in either the regression coefficients or elevations among the four 

models. The data were combined into a single model but the results using the single 

model are not reported because they do not reflect realistic LA1 values for some of the 

plots and may be unreliable because of possible differences in allocation to leaves among 

the four thickets. The lack of significant differences may be caused by the small sample 

sizes for each thicket rather than an actual lack of variation in the allometric 

relationships. 

Leaf area index according to the individual allometric models ranged from 6.4 * 
0.4 for the Bay Side thicket to 1 1.4 * 2.1 for the Mid-Island thicket although some of the 

values in plots with a relatively high occurrence of large stems may be overestimates 



(Marshall and Waring, 1986 and Turner et al. 2000). Leaf area index based on annual 

2 -1 leaf litter production and a specific leaf area of 0.0 15 m g dry mass ranged fiom 4.1 * 
0.5 in the Bay Side thicket to 10.2 * 0.4 in the Young thicket (Table 1). Estimates 

derived form allometric models agreed very closely with values obtained using annual 

litterfall for the two younger thickets but allometric estimates for the two older thickets 

appear somewhat high (Table 1). 

DISCUSSION 

Spatial patterns of variation in the structure and productivity of coastal plant 

communities, including those on barrier islands, have primarily been explained by the 

effects of steep environmental gradients on plant morphology and physiology (Oosting 

and Billings, 1942; Boyce, 1954; Levy, 1990; Ehrenfeld, 1990; Young et al., 1994). 

Myrica cerifera shrub thickets represent an important successional stage in the 

development of plant communities in coastal environments (Levy, 1990). On accreting 

shorelines, the formation of a chronosequence facilitates the study of successional 

dynamics and the interaction between age and the environment (Hayden et al., 1991; 

Stallins and Parker, 2003). In the cunent study, LAI, litter production and the understory 

light environment within Myrica cerifera shrub thickets all varied across the barrier 

island landscape. Although landscape position and associated environmental variation 

were important, biotic processes related to succession were also influential. 

Four different methods of LAI estimation showed similar spatial variation in 

shrub thickets across Hog Island. Seasonal patterns of LA1 using indirect methods also 



generally agreed with one another and these data were supported by seasonal patterns of 

litter production. However, the accuracy of each method in estimating the LA1 of these 

communities needs to be addressed because of the growing interest in shrub 

encroachment in historically herbaceous ecosystems and the effects it will have on NPP 
< 

(Jobbagy and Sala, 2000; McCarron and Knapp, 2003; Heisler et al., 2004). Although 

many studies have published similar data for forested systems (Marshall and Waring, 

1986; Pierce and Running, 1988; Runyon et al., 1994; Gower et al., 1999; Norby et al., 

2003), little work has been published to date specifically addressing the accurate 

estimation of LA1 in shrub canopies. If LA1 values on the ground are to be used to model 

NPP or calibrate remote sensing equipment in shrubdominated communities, then 

accurate estimates are essential (Bonan, 1993; Runyon et al., 1994; Gower et al., 1999). 

The portable integrating radiometer underestimated LA1 substantially throughout 

the year. Norby et al. (2003) and Deblonde et al. (1994) had similar results in forested 

systems when they studied LA1 in stands of Liquidambar styraczjlua and Pinus resinosa, 

respectively. The algorithms that calculate LA1 based on gap fraction are highly sensitive 

to deviations from the assumptions of leaf orientation previously discussed (Gower et al, 

1999; Norby et al., 2003). The arrangement of leaves on branches of Myrica cerijera 

may create a highly clumped canopy and leaf angles, particularly in young thickets, 

appear biased towards an orthotrophic growth pattern. Despite the potential errors, 

measurements using the LAI-2000 did provide a means of comparing spatial and seasonal 

dynamics of the four thickets. Determination of a clumping factor, as described by 



Gower and Norman (1991), based on canopy structure may be possible to correct LA1 

measurements. 

Annual litter production may be the simplest and most reliable method of 

estimating peak LA1 but minimal leaf loss and subsequent replacement during the 

growing season must be assumed. Seasonal differences in litter production are also a 

good indicator of differences in leaf expansion and senescence among sites. The primary 

disadvantage of using litter production to estimate LA1 is the time required compared to 

indirect methods. Whereas most leaf litter in deciduous forests can be gathered within a 

few months, the evergreen leaf habit of M cerifera dictates that litter must be collected 

for an entire year. In other evergreen systems, several years of data are often required to 

determine leaf turnover rate (Marshall and Waring, 1986). Additionally, interannual 

variability in leaf production due to climate may require several years of monitoring to 

obtain an accurate temporal average of LA1 (Marshall and Waring, 1986; Norby et al., 

2003). 

Leaf area index estimates using light attenuation and the Beer-Larnbert law 

agreed more closely with the litterfall and allometric models than with the portable 

integrating radiometer. The Beer-Lambert law uses diffuse and reflected light in addition 

to direct beam radiation, and therefore, it may be more appropriate in highly clumped 

canopies (Pierce and Running, 1988; Maass et al., 1999). For the current study, logistic 

and instrument limitations dictated that light could be quantified at only one site within 

each thicket for a given time period. Temporal averaging of instantaneous values should 

provide an accurate characterization of temporal light patterns with just one sensor 



(Neufeld and Young, 2003) but the design limited the ability to apply statistics to 

estimate LAI for the entire thicket. The results did demonstrate that the reproducibility of 

LA1 estimates at the same location using the Beer-Lambert law was good relative to other 

methods when light measurements were taken during mid-day on clear days. 

Measurement at a single site may explain why LAI and light levels in the Young 

thicket do not agree more closely with the results of annual litterfall and allometric 

modeling. Integrated PAR at the site selected in the Young thicket was much higher than 

expected and should generally be disregarded with respect to variation across the 

chronosequence. The site was selected relatively early in the growing season and the 

lower LA1 at this site may reflect residual damage from Hurricane Isabel. Had ten 

different sites been measured in the thickets, as was done with the litter production and 

the portable integrating radiometer, light attenuation would likely reflect a spatial mean 

similar to the other methods. 

The allometric models appeared to be very accurate for sites dominated by 

smaller stems but may have overestimated LA1 in older sites dominated by large stems (> 

10 cm diameter at a height of 0.7 m). There were two potential sources of error in the 

models, both related to stem size. Each of the plots used to estimate LA1 in the Bay Side 

and Mid-Island thicket had a number of large stems. However, due to the time and labor 

required, I was unable to sample an adequate number of large stems during the initial 

field season. Larger stems need to be added to the models to cover the entire range of 

stem sizes in the study plots. Additionally, similar studies have reported an inherent 

tendency for allometric methods based on stem diameter to overestimate the contribution 



of large stems to stand LA1 (Marshall and Waring, 1986 and Turner et al., 2000). For the 

current study, however, a linear equation between stem diameter and leaf area had a very 

strong relationship and a recalculated linear equation should be reliable once large stems 

are included. 
/ 

Myrica cerifera shrub thickets are much shorter than most forested communities 

(-5 m or less) and lack the stratification associated with most forests. However, the 

results of the current study generally agree with the results of similar studies in forested 

systems. Specifically, the portable integrating radiometer underestimated LA1 while the 

allometric models tended to overestimate LA1 when large stems were present (Marshall 

and Waring, 1986; Pierce and Running, 1 988; Runyon et al., 1994; Gower et al., 1999; 

Norby et al., 2003). Further refinement of the allometric models to include larger stems 

may improve the accuracy of this method and provide the most accurate means of 

measuring LAI. 

Although there was considerable variation in the results using the four methods, 

the data do provide some clear patterns of spatial and seasonal variation. Spatial 

variation in LA1 and annual litter production has typically been explained by differences 

in site water availability due to the high transpirational demand associated with large 

amounts of foliage (Poole and Miller, 1981; Martinez-Yrizar et al., 1999; Norby et al., 

2003). On barrier islands, variations in water, nutrient and salinity stress relative to 

landscape position and soil age often determine the extent of vegetative cover (Oosting 

and Billings, 1942; Levy, 1990). However, for the four Myrica cerifera thickets on Hog 

Island, stand age may also be an important factor in determining LAI. In the two 



youngest sites on Hog Island, peak leaf area index for the study period was -10 according 

to both litterfall and the allometric methods, a value often cited as the lower boundary for 

tropical rain forest and higher than most other forested communities (Marshall and 

Waring, 1 986; Pierce and Running, 1 988; Barbour et al., 1 999; Larcher, 2003; Norby et 
I 

al., 2003). The Mid-Island thicket had an LA1 approaching 8 according to annual 

litterfall, higher than many temperate deciduous forests (Larcher, 2003; Norby et al., 

2003; Barbour et al., 1999). Leaf area index and litter production declined with 

increasing age but even the declining Bay Side thicket had an LA1 -4 according to 

litterfall data, comparable to many temperate forests and higher than most shrub 

dominated systems (Larcher, 2003; Norby et al., 2003; Barbour et al., 1999; Martinz- 

Yrizar et al., 1999; Lichter, 1998; Maass et al. 1995). 

The Bay Side thicket consistently had the lowest leaf area index, litter production, 

and stem density of the four thickets. The Bay Side thicket occupies the oldest soils on 

the island and is likely unaffected by salinity fiom sea-spray or flooding except during 

severe storms. Young et al. (1995) showed that both tissue and soil sodium levels were 

lowest at this site. Levels of nitrogen, calcium and potassium were also highest in the 

Bay Side soils and soil phosphorus did not vary from the other sites (Young et al., 1995). 

Still, the Bay Side thicket showed an increase in shrub mortality, a decline in shrub 

growth and recruitment, and an increase in the formation of gaps which allowed vines to 

establish and compete with shrubs for resources (Young et al., 1995). 

The decline of the Bay Side thicket may follow the pattern described in Hilbert 

and Larigauderie (1 990) who examined stand senescence in chaparral and similar 



ecosystems. The oldest shrubs in the Bay Side thicket approach 40 years but mortality 

increases markedly after 30 years (Young et al., 1995; Crawford and Young, 1998a). The 

decline of individual shrubs, coupled with a lack of recruitment (as detailed in Young et 

al., 1995), causes a reduction in stem density, basal area and LA1 and an increase in light 

levels under the thicket canopy. 

The lack of recruitment in the Bay Side thicket in the study by Young et al. 

(1995) was likely caused by the low light environment and heavy litter fall that 

accompanies the higher LA1 when the thicket is expanding. However, the distribution of 

stem sizes in the current study includes a large number of stems < 20 rnrn diameter 

indicating a substantial increase in recruitment during recent years. Crawford and Young 

(1998b) showed that seed banks represented a pioneer community rather than the next 

successional sere and Myrica cerifera was the dominant woody component of seed banks 

within intact thicket canopies and a major component in gaps (Crawford and Young, 

1998b). As shrub mortality has increased, the decline in LA1 and resulting increase in 

light levels has allowed recent establishment of new M. cerifera seedlings. However, the 

recent increase in recruitment is not enough to maintain the high LA1 values seen in 

younger thickets. 

Seasonal variation in LA1 and litterfall in Myrica cerifera thickets was also high. 

Three of the four sites experienced two periods of increased leaf litter production during 

the year: a brief spring pulse coinciding with the beginning of new leaf growth and a 

longer period of increased litter production in the autumn. Litterfall rates for all sites 

were lowest during July and August. The Mid-Island thicket did not experience a 



substantial leaf litter pulse during the autumn relative to the other thickets. In spring, the 

Mid-Island thicket had the highest level of litterfall even though the two younger sites 

produced more annual leaf litter. Shrubs at this site were able to retain more leaves and 

maintain a higher LAI throughout the winter possibly indicating a greater ability to gain 
, 

carbon during brief warm periods in the winter. 

Similar to peak LA1 and annual litter production, leaf development and leaf 

senescence has been related to site water balance. Wright (1991) demonstrated that 

irrigation increased annual leaf production in some instances but also changed patterns of 

leaf flush in tropical shrubs. Similarly, Norby et al. (2003) showed that forest stands of 

Liquidambar styraczjZua exhibit shorter leaf duration in years with low rainfall in August 

and September. Environmental cues related to site water balance that could affect leaf 

phenology include soil moisture content, understory humidity, and understory 

temperature (Wright, 1 99 1). 

Although the availability of fresh water is often the primary environmental driver 

of barrier island vegetation dynamics, the likelihood that water stress had a major effect 

on spatial variation in leaf duration in the current study on Hog Island seems remote. 

Precipitation during the 2004 growing season was much higher than average (-700 rnrn 

compared to -450 rnm) (Krovetz et al., 2004). During July and August, all sites 

experienced flooding from heavy precipitation and water levels in the thickets remained 

relatively high throughout the fall and winter (personal observation). Rather than water 

balance, the differences in leaf duration among the thickets could be due to other 

environmental stresses such as salt or nutrient stress. Young et al. (1995) showed that 



both soil and tissue sodium concentrations were highest in thickets closest to the 

shoreline and declined across the island. Plants under stress fiom resource limitations 

have a generalized mechanism of response that changes hormonal balance to favor 

production of abscissic acid (Chapin, 1991). This response may explain a greater loss of 
/ 

leaves in highly stressed shrubs. 

Like the two youngest thickets, the Bay Side thicket also demonstrated a 

substantial increase in litter production in fall. Again, the greater seasonal loss of leaves 

may be a generalized response to stress (Chapin, 1991). Although the greater distance 

from the shoreline should make the Bay Side thicket the least susceptible to the 

environmental stresses typically associated with coastal environments, the proximity of 

this thicket to Hog Island Bay should also be considered an important environmental 

factor. There is no primary dune to protect the Bay Side thicket fiom stresses such as 

wind or saltwater intrusion during extremely high tides. The occurrence of these stresses 

in the Bay Side thicket may explain why the Mid-Island thicket actually had the largest 

stems of any site even though that thicket is younger than the Bay Side thicket. The 

difference in leaf duration at this site may also be the result of increasing competition 

following the model described by Bertness (1999). The increased abundance of vines 

such as Parthenocissus quinquefolia and Vitis aestivalis and rapid establishment of 

herbaceous plants in the understory may be affecting the phenology of the Bay Side 

thicket as competition for light and soil resources increases. 

Parthenocissus quinquefolia, Toxicodendron radicans, and Vitis aestivalis are 

among the few species in the seed bank able to germinate and establish within thickets as 



light levels begin to increase due to shrub mortality (Crawford and Young, 1998b). The 

light environment across the chronosequence generally followed the same pattern as LAI 

and litter production as canopy light interception decreased with stand age. Although 

most of the shrubs in the colonizing site were < 3 m tall, the high stem density and high 

LA1 from extensive edges created the most deeply shaded environment of the four sites 

following the pattern described in Neufeld and Young (2003). The low light was likely a 

key factor inhibiting germination of most of the species present in the seed bank 

(Crawford and Young, 1998b). The Bay Side thicket, however, has declined such that 

light within intact canopies exceeds the germination and growth requirements of most 

mid-to-late successional species (Larcher, 2003). The lack of diversity in the seed bank 

appears to be the primary mechanism limiting diversity and potential succession at this 

site rather than competitive inhibition although episodic disturbances, such as Hurricane 

Isabel, may also limit the complexity of the community development. 

Leaf area index, light attenuation and litter production in the Myrica cerifera 

shrub thickets on Hog Island were higher than many mature forests and approached 

levels often associated with tropical rain forest or freshwater marshes indicating that the 

potential for primary productivity in shrub-dominated communities is extremely high 

even in the harsh barrier island environment. The comparison of characteristics such as 

leaf area index and light levels across multiple spatial and temporal scales can help 

distinguish between the effects of disturbance, environmental stress and stand age on 

productivity. The accurate estimation of leaf area index is important to quantify this 

variation. Indirect methods of estimating LAI tend to plateau around 6 because of gap 



fraction saturation and may be of limited use unless they are calibrated by direct methods 

(Gower et al., 1999). Litter production should also be monitored for several years to 

determine the effects of interannual variability in climate, especially precipitation. 

Distinguishing between the effects of disturbance, environmental gradients and 
I 

changes in shrub morphology due to age can be difficult but is ultimately necessary 

because of the complexity inherent in even relatively simple systems. The results of the 

current study demonstrate that, while the effects of environmental gradients are important 

in determining species composition, once a species is established factors driving 

succession may have a greater impact on stand structure than slight variations in the 

environment. To some degree, environmental stresses can be ameliorated by slight 

changes in leaf phenology rather than by reducing growth and sacrificing competitive 

ability as demonstrated by the four thickets in the current study. While complex, the 

spatially and temporally dynamic nature of barrier islands does allow researchers to 

determine the primary drivers of ecosystem structure and function. 
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Table 1. Comparison of leaf area index estimates in four Myrica cerifea thickets on Hog 
Island during the summer of 2004 using four common methods of measurement. Estimates of 
LA1 using light attenuation represent a range of values measured over several days at a single 
site in late June rather than a spatial average. The mean one standard error is provided for 
other methods. 

Thicket LAI-2000 Light attenuation Annual Allometric 
(late June) (k= 0.6) litterfall modeling 

Bay Side 1.9 k 0.1 4.5 - 5.1 4.1 k 0.5 6.4 k 0.2 

Mid-Island 3.5 k 0.2 7.2 - 7.7 7.7 k 0.3 11.4 k 2.1 

Young 3.9 k 0.1 4.0 - 4.4 10.2 k 0.4 10.2 k 1.3 

Colonizing 3.6 k 0.2 8.6 - 8.8 10.0 + 0.3 9.8 1.8 



Table 2. Comparison of seasonal leaf area index measurements using light attenuation and a 
portable integrating radiometer for four Myrica cerifra thickets on Hog Island. Measurements 
of LA1 using light attenuation represent a range of values measured over several days at a 
single site rather than a spatial average. The mean one standard error is provided for the 
portable integrating radiometer (n =lo). An * denotes missing data. 

June January April 

Thicket Portable Light Portable Light Portable Light 
integrating attenuation integrating attenuation integrating attenuation 
radiometer (k =0.6) radiometer (k =0.6) radiometer (k =0.6) 

Bay Side 1.9 k 0.2 4.5 - 5.1 1.5 k 0.2 3.8 - 4.8 1.2 0.1 * 

Mid-Island 3.5 k 0.2 7.2 - 7.7 2.9 k 0.2 5.5 - 6.3 2.4 k 0.1 3.2 - 3.8 

Young 3.9 k 0.1 4.0 - 4.4 3.4 A 0.2 * 2.3 k 0.1 * 

Colonizing 3.6 0.2 8.6 - 8.8 2.8 * 0.1 7.9 - 8.0 1.9 k 0.1 2.4 - 2.9 



Table 3. Individual allometric relationships used to predict dry leaf mass based 
on stem diameters (Ds) for four Myrica cerifra thickets on Hog Island. For each thicket 
predicted leaf mass = 10 m(1og Ds)+ c . Mean leaf area index k one standard error is then calculated 
from specific leaf area and the predicted dry leaf mass of three plots in each thicket. 

Site Regression Constant r2 Mean Leaf Area 
Coefficient (f) Index * 1 S.E. 

( m) 

Bay Side 1.635 -0.230 0.966 6.4 k 0.2 

Mid-Island 1.689 -0.4 17 0.904 11.4 k 2.1 

Young 2.097 -1.131 0.968 10.2 k 0.7 

Colonizing 2.41 1 -1.525 0.958 9.8 k 1.8 



Figure 1 .  The southern portion of the DelMarVa peninsula and the 
barrier islands of the Virginia Coast Reserve including Hog Island. 
Inset shows the positions of the four Myrica cerifra thickets on 
the north end of the island. BS = Bay Side, MI = Mid-island, Y = 

Young, C = Colonizing. 
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Figure 2. Seasonal variation in leaf area index of four 
Myrica cerifra thickets on Hog Island. Each value is 
based on measurement at ten sites using a portable 
integrating radiometer. Error bars represent one 
standard error. 
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Figure 3. Seasonal production of leaf litter for four Myrica 
cerifra thickets on Hog Island. Error bars represent * one 
standard error. 
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Figure 4. Seasonal variation in photosynthetically active 
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radiation (PAR) below four Myrica cerifera thickets on 
Hog Island (BS = Bay Side, MI = Mid-Island, Y = Young, 
C = Colonizing). The percentage of above canopy 
radiation is noted above each bar. An * denotes 
missing data. 
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Figure 5. Spatial variation in maximum photosynthetically 
active radiation (PAR) in the understory of four Myrica 
cerifera thickets on Hog Island. Maximum incident PAR 
is shown for comparison. Reference lines demonstrate 

-2 -1 the relative magnitude of 100 umol m s to understory 
light. 
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Figure 6. Frequency distribution of stem diameters in four 
Myrica cerifera thickets on Hog Island. 
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Figure 7. Leaf mass vs. stem diameter for 34 Myrica 
cerifera stems fiom four shrub thickets on Hog Island. 
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