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Abstract 

 

 Mid-Atlantic barrier islands are dynamic landforms that support unique 

vegetation assemblages and provide protection to coastal bay and mainland ecosystems. 

The islands (Assateague and Parramore here) are subject to increasing destabilizing 

pressures from climate change. Upward vertical forcing on freshwater bodies by rising 

sea surface elevation is expected to significantly alter vegetation community and 

biophysical structure. This dissertation documents the existing spatial gradient of Pinus 

taeda L. (loblolly pine) biophysical structure, and develops a water availability proxy 

well correlated with forest structural metrics. This new variable, DWST, a product of 

depth to water table and a soil textural index, is well-suited for dynamic monitoring and 

modeling of vegetation change as water tables change. Dendrochronological analyses 

provide convincing support for the proposed average rooting zone DWST as a major 

constraint on forest growth. 

 A lidar instrument, EAARL (Experimental Advanced Airborne Research Lidar) is 

shown to provide accurate representations of coarse and fine forest structural metrics. 

EAARL canopy reflection ratio (CRR) predicts ground-based plant area index (PAI) at a 

forest-wide r2 of 0.73. PAI incorporates leaf area and thus can potentially track foliar 

adjustments due to changes in soil moisture levels at short time scales. The waveform-

returning nature of the EAARL also enables very good representation of foliage density 

distribution. The height of peak canopy density (HPCD) is proposed as a surrogate for 

maximum canopy height in lidar-based studies and an indicator of hydrological gradients. 
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 The lidar analyses and field ecohydrological system description together comprise 

the basis for a candidate monitoring scheme of sea level effects. With additional minimal 

field surveys, it is expected that this measurement system will infer changing water 

relations from incremental forest structural change. 
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1
I. Introduction 

 
 

 This dissertation is an effort to document baseline biophysical and environmental 

conditions of Mid-Atlantic barrier island forests, and determine an underlying 

ecohydrological mechanism that will aid in predicting effects to forest structure and 

development by rising sea levels. Robust biophysical and environmental classifications 

are pursued to clearly identify the respective gradients, and the spatial relationships 

between them along the barrier island “toposequence” (Brady and Weil 2008). Spatial 

associations of site type (based mainly on depths to water table and soil textures) and 

structural expression substitute for the expected temporal change in forests and their 

freshwater sources with sea level rise.  

 Upon classifying the sites, likely trajectories in development with sea level and 

water table rise are theorized based on the synthesis of: 

• A basic understanding of geomorphologic evolution of barrier islands 

• Correlating an estimate of “water availability” based on previous 

(Hayden et al. 1995) and current (this volume) theoretical work with 

structural metrics 

• Measuring structure to a temporally fine estimate of above-ground 

vegetation area to assess the limits of biophysical reactivity to water 

availability 

• Two dendroecological analyses that support the above water 

availability theory, help build a broad forest development paradigm 



 

 

2
based on rooting zone dynamics, and enable a degree of temporal 

extrapolation forward 

• Groundwater evapotranspiration estimates of the biophysical types that 

emphasize the interplay of structural levels (tree and shrub) 

 Finally, a lidar instrument is tested for mensuration reliability at the study area. 

The system description emerging from the points above is proposed as a basis for a 

scheme to analyze and monitor above-ground biophysical structure for changing water 

relations with waveform-returning lidar.  

 

1.1. Background 
 
 

 Mid-Atlantic barrier islands are naturally fluctuating physical systems through the 

process of “rollover” by which sands are shifting gradually westward with dominant wind 

and wave forcing. Barrier islands provide critical protection to mainland shores by 

attenuating much of the energy of coastal storms, thereby also sheltering the highly 

productive marshlands and estuaries of the bay side (Ruppel et. al. 2000). Many 

waterbirds use these coastal bays and marshes (see Erwin 1996), and some populations of 

shorebirds like that of the threatened Atlantic coast piping plover (Charadrius melodus) 

depend on the barrier islands for nesting (USFWS 1996).  

 Resistance of the islands to storm and wave action is determined to an extent by 

vegetative cover. However, the loblolly (Pinus taeda) forests of Assateague Island 

National Seashore (AINS) in Maryland and to a lesser extent those of Parramore Island of 



 

 

3
the Virginia Coast Reserve (PIVCR), lack baseline biophysical data and information 

describing ecological processes and functioning. 

 Altered storm patterns and frequencies predicted to occur with climate change 

could affect island geomorphology and water relations, and maritime forests may 

experience die-back such as occurred on Hog Island of the Virginia Coast Reserve (VCR) 

in the 1920’s, and recently on Northern Parramore (Hayden et al. 1995). Salinization of 

groundwater due to sea level rise resulted in patterns of slash pine (P. ellioti) mortality on 

Sugarloaf Key, Florida (Ross et al. 1994). Shao et al. (1995) show that barrier island 

shrub water relations could be significantly affected by a change in temperature (through 

increased evapotranspiration).  

 Central to the present study is the threat posed by rising sea level to freshwater 

sources in simple vertical forcing of water tables and elevated saline mixing zones. 

Hayden et al. (1995) report that the VCR is undergoing a relative (land subsidence plus 

real sea-level rise) sea-level change of +3.0mm yr-1. Freshwater reserves atop salt water 

should rise accordingly, changing site water tables and, theoretically, vegetation 

communities. The substitution of spatial scale for temporal scale in changing water levels 

over the island toposequence is acceptable because of the relatively simplified and 

observable nature of barrier geomorphology. However, important considerations are 

given to the interacting factor of soil texture to a simple water-table-and-sand-driven 

model of changing water availability.  

 Water availability – likely determined in large part by depth to water tables at the 

barrier islands (Hayden et al. 1995) – plays a major role in vegetation dynamics and 

productivity, but the governing interactions, including leaf area index (LAI) in 
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transpiration and photosynthesis, are not well understood (Gholz 1991). Fundamental 

hydrological relationships are also not well understood for AINS or PIVCR. Bolyard et 

al. (1979) applied a model developed in the Outer Banks of North Carolina to AINS, yet 

concluded there was insufficient information to infer a robust hydrological system 

description. In order to predict possible effects to the extent and distribution of vegetation 

communities, there must be dependable descriptions of site water conditions and 

sufficiently specific knowledge of forest water relations. 

 Potential applications and limitations of small-footprint, waveform-returning lidar 

(Light Detection and Ranging) systems need to be documented. Lidar monitoring of 

vegetation communities may provide a valuable tool in characterizing environmental 

effects, and in the identification of areas vulnerable to change. The NASA EAARL 

(Experimental Advanced Airborne Research Lidar) system appears to hold particular 

promise because of its ability to characterize above ground vegetation vertical density as 

well as bare earth topography at flexible scales. EAARL work in this dissertation 

involves novel techniques of data processing, analysis, and application that can inform 

future EAARL and general lidar-based research. Specifically, it is expected that EAARL 

will support the development of standardized methodologies to monitor leaf area and/or 

other vegetation parameters for use in modeling and interpreting forest stand processes 

and water relations. 
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1.2. Study Area 

 

 AINS (Fig. 1), centered at Easting 485,236m and Northing 4,224,294m (UTM 

Zone 18N), on the coast of Maryland is administered by the National Park Service (NPS). 

The unit runs 37km from the Ocean City, MD inlet to the Virginia line, is 2.5 Km at its 

widest, and has forested areas up to 3.5m AMSL (above mean sea level). There are 26 

0.08ha (16.3m radius) plots dedicated to the full array of ground and remote measures.  

 

 
Figure 1.1. Assateague and Parramore Islands of the Delmarva 
Peninsula. 
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 Parramore Island (Fig. 1), centered at Easting 442,933m and Northing 

4,153,403m (UTM Zone 18N) is administered by The Nature Conservancy (TNC) as part 

of the VCR. The National Science Foundation (NSF) maintains a Long Term Ecological 

Research (LTER) site at the VCR. Parramore’s area is approximately 13.3km long and 

3km wide. Maximum forest elevation is about 7m AMSL. Of approximately 15 

previously established (Richardson and Shugart 1993), loblolly-dominated forest plots 

(also 0.08ha) only 3 were of acceptable condition for this study. There was a massive 

canopy die-off from effects of a fire, bark beetle infestation, and a hurricane from 

September 2002 to September 2003. Canopy decline continues in impacted areas but 

there is extensive recruitment. 

 

1.3. Study Outline 
 

 
1.3.1. Objectives 
 
 The work is designed to characterize the vulnerability of communities and 

structural types on Mid-Atlantic barrier islands, and predict the likely effects to these by 

sea-level rise and the forcing of island freshwater tables. For instance, capturing leaf area 

changes associated with general water availability can provide a circumstantial reference 

to anticipate and better model production and growth trajectories under changing water 

levels. 

 Barrier island vegetated areas are essentially geomorphologically controlled 

habitats with community succession dependent on the changes to island physical 

conditions. Woody vegetation communities on the eastern, depleting edge are generally 

younger, while those on the accreting western side of the advancing edge are older.  
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 It is necessary to frame the current investigation of forest structural change as 

distinct from the geomorphic pre-conditioning of vegetation that is present. Because of 

the relatively fast geomorphic evolution of sites, and the addition of a generally spatially-

constant pressure in the form of sea level, vegetation is organized along a scale of 

potential structure in this study. Such a forcing will change developmental trajectories in-

situ, as geomorphic adjustment to critical ecosystem-structuring components like soil 

texture will not keep pace. 

 The project initiates investigation into describing a whole-system ecohydrological 

function concept of a barrier island toposequence (with a space-for-time scale 

substitution), representing an integrative approach to monitoring system dynamics as they 

change ever faster. Figure 2 is a proposed conceptual model to structure monitoring and 

analysis of the effects of sea level rise to barrier island forests. 

 

1.3.2. Overview of sections 

 Chapter 2, “Mid-Atlantic barrier island forest structural properties and site 

gradient expression” comprises the first comprehensive description of AINS forest 

structure, and the first PIVCR forest measures since 1996. Along with some extensive 

environmental measurements, classification groups are derived by a plot-network 

principal components analysis (PCA) for all succeeding analyses of gradient interactions, 

and predictive theory formulation. An uncommon use of standard dendrochronological 

data is applied to forest development questions on AINS, and common climate 

interactions are tested within groups with standard techniques. 
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Sea level

Freshwater lens table height

Increased rate of geomorphic change 
with increased storminess, increased 

washover

Prediction of effects of sea level rise 
must account for expected 

geomorphology

Freshwater lens morphology

Lens growth and depletion on a localized scale

Loss or growth of woodland habitat

Change in “soil moisture availability” over longer term

Effect of impeding 
layers of old peat

Regulation of plant surface area via change in the 
Plant Area Index (PAI)

Change in the structural and species development 
patterns and maximum maintained biomass

Inundation and death; or increased soil moisture 
availability leading to greater PAI in short term

Altered succession; overall reduced island 
stabilization (high elevation surfaces unlikely to 

colonize at necessary rate); reduced island 
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Figure 1.2. Conceptual model of the Mid-Atlantic barrier island sea-level and above-ground forest 
structure relationship. EAARL lidar would be employed at regular intervals to provide fine resolution 
Canopy Reflection Ratio (CRR) changes with quantified water level changes and ground-verified structural 
changes. Ground verification could be suspended after regression relationships of the structure-moisture 
interaction reach significant levels. Further remote monitoring would provide predictions of decline 
thresholds due to sea level rise. The figure is developed based on recommendations in Fancy et al. (2009) 
“Monitoring the Condition of Natural Resources in US National Parks.” 
 

 Chapter 3, “Sea level forcing, and relationships of freshwater availability and 

barrier island forest biophysical structure” develops the correlative supports for a basic 

theory of site water-limited growth on barriers to fashion a broad predictive relationship 

of rising water tables and biophysical structure adjustment. The work affirms the 

presence of, and coarsely characterizes, current sea-level signals in water tables to infer 

potential gradations in sensitivity to forcing across sites and islands.  

 Evapotranspirational dynamics of this habitat are studied in Chapter 3 by applying 

the White (1932) groundwater evapotranspiration equation to hourly water level data. 
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This exercise yields results that affirm well-established ecophysiological relationships. 

Results also help shape the main ecohydrological theory of development for barrier 

islands, and lend direction to future investigations into ecohydrological changes due to 

sea level rise.  

 Chapter 4 “The application of the EAARL (Experimental Advanced Airborne 

Research Lidar) to measurement and monitoring of barrier island forest structure in an 

ecohydrological change scenario” comprises a thorough ground-truthing of the EAARL 

instrument in the P. taeda forest type of the barriers. Data in the form of standard lidar 

metrics and new EAARL waveform-specific derivatives are further utilized for the 

exploratory ecological monitoring analysis here. Their predictive potentials are tested 

against ground parameters that are rated for their indication of general water availability. 

New analyses are explored to test for efficient ways of parsing lidar canopy information. 
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II. Mid-Atlantic barrier island forest structural properties and site gradient 

expression 

 

Abstract 

 

 The inherent ephemeral nature of a barrier island accents a concern for the 

continued integrity of upland communities as island geomorphic evolution is increasingly 

forced by sea level rise. Several easily measured and mapped biophysical variables are 

identified here for the monitoring of changes in upland Pinus taeda (loblolly pine) forest 

subject to environmental forcing. A principal components analysis (PCA) will relate the 

biophysical data (and, separately, environmental variable data) to forest structure. This 

ecological investigation will connect forest growth and ecohydrology, initiate baselines, 

and characterize vulnerabilities among different classifications. 

 A biophysical variable, plant area index (PAI), measured with the electronic LAI-

2000 (Li-Cor Biosciences, Lincoln, NE) optical instrument, can represent differences in 

photosynthetically active plant area across gradients as well as change within sites over 

monitoring periods. This latter temporal variation can be represented by the proportion of 

PAI range to PAI average. While promising, this resulting “fluctuation” statistic requires 

more verification before attributing a material equivalence. Another descriptive 

biophysical metric, height of peak canopy density (HPCD), is derived from merged 

crown ratio data in a plot and appears to be a coarse leaf-area distribution weighting. Site 

environmental differences, generally related to soil moisture dynamics, explain 66% of 

the variation in HPCD. Of the biophysical metrics measured, the most reliable site 
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indicator is the maximum canopy height (MCH), a finding consistent with studies in 

other forests. In this case, 76% of variation in MCH is explained by site conditions. 

 Further evidence of differential site effects on barrier island P. taeda growth are 

found using dendrochronological techniques. Growth at lower site index (SI) stands 

declines at a significantly faster rate than on higher SI sites. The 10-year average radial 

growth rate of trees declines over sampled periods of 20 years following stand initiation, 

and is up to 27% less in lower SI stands. This correlates with more shallow water tables 

in low SI sites. Root competition should be greater at these low SI sites when compared 

to better sites that may access more stable water tables at greater depths. It is feasible to 

extrapolate the average bio-type growth rates found in early stand development to predict 

growth and developmental reactions by biophysical groups to water table rise and greater 

storminess. In tree-ring chronology correlations with climate, the differences in 

correlation among site types can be explained by this soil profile/rooting zone and water 

source theory. One can reliably differentiate forest sites, on relatively small spatial scales 

of barrier islands, by their reactivity to shared climate. 

 

2.1. Introduction 

 

 This chapter serves to describe the methodologies and initial data relevant to the 

larger project investigating ecohydrological function and remote sensing of canopy 

structure, and to introduce and describe general developmental issues in Pinus taeda 

(loblolly pine) forest over a barrier island toposequence. The major interactions of 

concern in the larger project occur in the rooting zone over time with changing average 
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water tables as sea level rises. The direction of inquiry throughout this chapter is based on 

well-founded theory of water table-structured vegetation mosaics on barrier islands 

(Hayden et al. 1995; Ehrenfeld 1990), with relatively little ecohydrologic investigation 

into likely vegetation changes with water table rise (Ehrenfeld 1990). The broad nature of 

the present study requires some acceptance of circumstantial evidence of moisture 

relations to advance the change analysis. Depth to water table and soil texture index are 

utilized to characterize a site’s water availability. Analyses initiated here are developed 

further in the succeeding chapters where predictions of effects on forest development take 

shape.  

 Principal components analysis (PCA) is used to classify sites into biophysical and 

environmental types. These groups act to structure all analyses and predictive theory 

formulations in a space-for-time scale substitution of general sea-level rise effects to 

island forest communities. Unlike studies that describe vegetation using detailed species 

presence along a continuum to derive principal components (PC’s), and model an 

underlying environmental gradient (see Roman et al. 1985, and Zampella et al. 1992), the 

present study relies on PCA of general vegetation structure to predict the likely impact of 

changing water relations. Biophysical statistics for classes that emerge from the PCA will 

be assessed for general correlation with site hydrologic indicators to aid in populating a 

moisture/forest structure gradient. Site types derived from the environmental PCA are not 

dependent on biophysical types, and they provide a measurement of the direct effects of 

water-related abiotic variation on ecosystem properties. 

  Plant area index (PAI) serves as a relative index of site quality and overall forest 

stature among sites. It incorporates foliar area (leaf area index or LAI) and woody area. 
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Photosynthesis and evapotranspiration depend on leaf area (and associated stomatal 

density) as a surface of interaction and exchange (Gholz et al. 1990). Circumstantial 

evidence generally supports the use of LAI and PAI as indicators of site-mediated 

moisture availability (see Grier and Running 1977, Hennessey et al. 1992, Cowling and 

Field 2003). PAI changes intra-seasonally, and in P. taeda, leaf area has been found to 

vary temporally with moisture variables: litterfall decreases in the year following a dry 

year (Hennessey et al. 1992); and the number of foliage flushes in a year is affected by 

soil moisture (Spurr and Barnes 1980). However, dynamic predictive lag and transfer 

functions relating moisture variables and leaf area measures – thus providing for a fine-

scale analytical and monitoring tool – are lacking. These effects are dealt with in Chapter 

3. 

 Crown length measurements were collected for all trees and a unique plot-level 

variable – height of peak canopy density (HPCD) – that may approximate a leaf area 

distribution index in P. taeda, was developed. Crown length is important on the scale of 

individual trees. Nagel and O’Hara (2001) and Gillespie et al. (1994) find that 

productivity-related biomass changes occur within a crown at branch foliage distribution 

levels. Long and Smith (1990) argue that relative crown size indicates stemwood 

production efficiency, and found declining woody production per unit leaf area with 

increasing crown size in lodgepole pine (P. contorta).  

 The representation of foliar density distribution in HPCD is rather coarse at the 

scale of the plot but it distills the large amount of information found in the foliage height 

profiles of Aber et al. (1982) to a convenient index. Thus, HPCD variation is due in part 

to site factors that determine P. taeda hydraulic architecture and evapotranspirational 
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physiology. The raw crown data is processed in a manner analogous to the histogram 

source of the Ashton and Hall (1992) “stratification index”, but based on a literature 

search, there appears to be no metric identical to HPCD in use. 

 Tree ring increment growth rate serves, to an extent, to indicate variable 

developmental pressure by environment (along with general stand dynamics and 

competition effects). McClurkin (1958) found rapid radial growth response to declining 

site moisture variables in shortleaf pine (P. echinata Mill.) in N. Mississippi, though 

there was a non-trivial amount of unexplained variation within the time frame analyzed. 

Following a general recommendation (K. Hadley pers. comm.), the present method 

results in an alternate version of the technique employed by Nowacki and Abrams (1997) 

to detect release patterns in Pennsylvania oak forests where releases, measured in average 

growth rates, were timed with disturbances. In the present study, barrier island forest 

stands are compared by rates of decline over standard periods whereas the previous 

researchers had established proportional changes in growth as indicators for a prescribed 

event (Nowacki and Abrams 1997, Veblen et al. 1991). Using the raw ring width 

increment averages benefits from “discounting short-term climatic pulses and gradual 

ring-width changes due to tree aging, bole geometry, and long-term climate shifts” as 

Nowacki and Abrams (1997) note. 

 Differences in reactivity to previous and current-year climate can also explain 

radial growth variation among site types. Fritts (1976) notes that variation rates alone can 

indicate the degree of limitation imposed by environment on growth, with more limited 

sites being more sensitive. There is also opportunity to elucidate environmental control of 
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growth in the interpretation of specific patterns of variation and correlative directions 

with monthly climate. 

 Taken together, both dendroecological analyses allow for detailed, type-specific 

responses to changing water levels to be drafted and extrapolated forward for the 

purposes of this project. 

 

2.2. Methods 

 

2.2.1. General plot installation and structural measures 

 Permanent monitoring plots were installed at Assateague Island National 

Seashore (AINS) to represent structural gradients in the approximately 700 acres of forest 

on the Maryland end of Assateague Island (Fig. 1). On Parramore Island of the Virginia 

Coast Reserve (PIVCR) (Fig. 1) sites were chosen from an existing plot network (see 

Parramore Island section below) because they had some foliated canopy remaining after 

the widespread decline following a fire in 2002, subsequent beetle infestation, and 

Hurricane Isabel. The plots at AINS were chosen by a visual field reconnaissance. Sites 

included in the final array had relatively consistent canopy cover, and were judged to be 

generally representative of gradients of canopy and basal density, and elevation. Plot 

numbers were derived from the distance in kilometers south from the Ocean City Inlet, 

MD: E.g., 29202 is plot 2 in the 29.2km plot area.  
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Figure 1. Overview of the study area including Assateague Island National Seashore, MD (AINS) to the 
North and Parramore Island of the Virginia Coast Reserve (PIVCR) to the South. There are 27 plots on 
AINS (26 of which comprise the bulk of analyses), and 3 plots on PIVCR (greatly reduced from pre-
disturbance number of intact forested monitoring plots). 



 

 

19
 Plots were installed by establishing a center point, pounding a stake, and using 

measuring tapes or a surveyor’s electronic total station to delineate a 16.3m radius circle 

(0.08ha area); all center points and tree trunks were mapped with the total station. Bare 

earth elevations were gathered with the total station and survey-grade GPS (Global 

Positioning System). Photo points were established at plot centers and perimeters, shot 

from and towards the four cardinal direction radii. Photos are catalogued from Fall 2004 

and Fall 2006 in digital format. 

 Biophysical structure surveys of the 26 AINS plots were completed in 2005 to 

record (for all trees >2.5cm diameter at breast height): maximum canopy height (MCH), 

and crown length (length from topmost to lowermost foliated points) with a clinometer; 

dbh (diameter at breast height) with a fabric diameter tape; shrub stem number (>2.5cm 

basal diameter); and shrub canopy area (SCA) with a straight tape. Measured trees and 

shrubs were marked with aluminum tags and nails. Standard field measures were 

processed to plot-level values of basal area (BA): π*(dbh/2)2, where dbh is the 

cumulative diameter at breast height of all plot trees, and the parabolic volume estimate 

(vol): (0.5(PTH)π(dbh/2)2 (Whittaker et al. 1974) where PTH is plot average tree height. 

One additional plot (No. 20901) was surveyed incompletely but is included in some 

analyses. Maximum stand age (maxage) was determined by dendrochronological analysis 

as described below. 

 

2.2.2. Crown ratio and plot canopy density distribution 

 Crown length was converted to crown ratio by dividing by total tree height. All 

individual crown lengths were pooled over the plot area from the average ground level to 
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the maximum canopy height to create plot crown presence frequency distribution at a 

10cm resolution (see histograms in Appendix A). HPCD was gathered directly from 

crown presence histogram data as the most frequently occupied 10cm segment (or 

approximate center point of multiple, adjacent peak segments). Accuracy of the 

frequency histograms is assumed to suffer in high-relief sites due to the averaging of 

ground elevation, but these sites are relatively few in number. A crown length collection 

accuracy issue, also relatively minor, is detailed in Appendix B.  

 

2.2.3. Fine structure 

 PAI was collected throughout 2004-2006 at AINS, though the 2005 growing 

season is best represented. The hand-held LAI-2000 derives PAI through calculation of 

canopy light transmittance with the Beer-Lambert Law (Pierce and Running 1988). The 

unit commonly underestimates biologically active leaf area, but does a good job of 

depicting changes across vegetation types and within sites during a season, and the PAI 

metric has been found to be linearly related (r2=0.97) to litterfall estimates of LAI 

(Chason et al. 1991). An average PAI value was calculated for all AINS plots utilizing 

the 2004 through 2006 measures. PAI temporal distribution in 2005 was described for 

only 20 of the 26 measured plots at AINS because these had adequate monitoring period 

lengths that could be assessed for approximate annual minima and maxima. Biophysical 

and environmental types were compared by average PAI and by 2005 proportional 

change.  

 As leaf area was not verified at AINS by traditional methods such as litterfall 

estimate, there is no accurate way to model true leaf area as a function of PAI (see 
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Sampson et al. 2003) in the present study. Appendix C details an exploratory 

methodology to estimate areal contribution by a foliage cohort.  

 The LAI-2000 is composed of five concentric light sensors capturing different 

ranges of zenith angles that are tuned to radiation below 490nm (blue visible light) where 

leaf reflectance and transmittance are minimal (Li-Cor Biosciences 1992). Following the 

manufacturer’s recommendations (Li-Cor Biosciences 1992), “above” and below-canopy 

readings were collected in as close a temporal and spatial proximity as was feasible to 

obtain the transmittance estimate. Transmittance is used to calculate the light-blocking 

area within the view. Each below-canopy measurement was determined by averaging 

eight readings: four at each of two concentric circles within the plot footprint. “Above”-

canopy calibrations were taken in open sites near study plots that allowed for 

unobstructed views of the sky (Li-Cor Biosciences 1992). All readings were collected in 

diffuse daylight at sunrise and/or dusk to prevent error associated with direct sunlight 

reaching the sensor (Chason et al. 1991). 

 All data processing was completed with Li-Cor FV2000 software (Li-Cor 

Biosciences 2004) . Upon LAI-2000 manual (Li-Cor Biosciences 1992) and literature 

recommendations (Chason et al. 1991, Holst et al. 2004), the two outermost view rings 

(the flattest zenith angles) were excluded from PAI calculations. This reduced effects of 

light penetrating at low angles through leafless portions of trunks, and limited the 

inclusion of extra-plot vegetation matter (Holst et al. 2004). The resultant cone of view, 

at about a 50º zenith angle, encompasses the average stand height and circular plot size to 

an adequate precision. 
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 Litterfall collections were made in the 11 plots equipped with water level 

monitoring wells. Hennessey et al. (1992) state that P. taeda needle fall will “represent 

the death of the total needle population formed in the previous year” while the timing of 

the fall is dependant on current seasonal climate (Hennessey et al. 1992). The litter 

weight increments were tested for correlation with PAI changes to test LAI-2000 

sensitivity, and with changes in depth to water table (DWT) to test foliage sensitivity to 

available water. Intensive litterfall collections allowing for total leaf biomass estimates 

would have been excessively labor-intensive for the purposes of this study. 

 

2.2.4. Environmental measures 

 Water table levels, soil texture, and precipitation were measured concurrent with 

the forest structure data. Weather data post-1991 are from an NPS-maintained RAWS 

(Remote Automatic Weather Station) at AINS, and from the National Oceanic and 

Atmospheric Administration (online source: NOAA National Climatic Data Center) for 

Snow Hill, MD prior to that time. DWT, for the purposes of initial stratification, was 

derived from single point-in-time (PIT) average measures to water tables during soil 

texture sampling in 3 soil pits per plot. 11 plots (‘water plots’) served as long-term water 

table monitoring sites. Here, Ecotone (Intermountain Environmental Inc.) automatic 

water level recorders were installed and programmed to record the water table every 30 

minutes. A regression analysis shows that PIT measures can predict real average water 

tables in the water plots at r2=0.69, with a root mean square error (RMSE) of 0.19m. 

 Soil organic matter (SOM; %organic matter) was determined by ignition (all 

samples were processed by The Virginia Tech University Crop and Soil Environmental 
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Sciences Soil Testing Lab, Blacksburg, VA) of an average sample from the top 10 cm of 

the 3 soil pits in a plot. Soil texture was determined in the same soil pits for 10cm 

increments through the soil profile to the water table. Thus, depending on a plot’s 

topography, there are 1, 2 or 3 samples at every 10cm depth. A depth increment average 

sample was mixed by hand and divided by sieve shaking into the diameter (mm) classes: 

fines (<0.05), very fine sand (0.05-0.10), fine sand (0.10-0.15), medium fine sand (0.15-

0.25) medium sand (0.25-0.50), coarse sand (0.50-1.0), and very coarse sand and gravel 

(>2.0). Portions were weighed on digital scales to 0.1 gram resolution. 

 The soil texture index (STI) variable was produced to supply a general textural 

variable for the principal components analysis site-typing. The fine sand:medium sand 

ratio was chosen for STI as they are distinct (separated by at least one other class) classes 

and significantly negatively correlate with the other (Spearman rank correlation rs=-0.90, 

p<.0001). The fine sand coefficient of variation (CV) over the entire sample population is 

57% and the medium sand CV is 27%. STI depicts relative fine-ness among the plot 

network, and hence, relative soil matric potential. 

 

2.2.5. Parramore Island 

 PIVCR plots were selected from the vegetation monitoring plot network 

established by Richardson, Porter, and Shugart (1993; VCR LTER online 

documentation). A field reconnaissance to find partially intact canopies in the decimated 

forest yielded 3 study plots. PIVCR plots 12 and 65 (Northernmost and center plots of 

Figure 1) tree layers were recorded in full, yet plot 91 (Southernmost, and sole intact 

plot) was measured only for canopy strata dominants (dominant P. taeda, and subcanopy 
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to intermediate Persia palustrus and Juniperas virginiana) due to time constraints. Plots 

91 and 12 were equipped with Ecotone water level recorders. Two temporary plots at 

PIVCR were included for maximum heights only; they were centered at water-level 

recorders installed transversely from the high point (plot 65-80) of a North-South ridge 

(‘Italian Ridge’) near plot 65 to a low point (plot 65-40). Sub-meter-accuracy horizontal 

positions of plot centers and tree stems, and average plot elevations were collected with 

survey-grade GPS and a total station survey instrument. 

 In plots 12 and 65, all attempts were made to find downed stems, and measure all 

standing stems according to the procedures laid out for AINS above. Downed bole 

lengths were measured approximately when they were fairly intact; there were 10 

instances of this in plot 65, and 3 in plot 12. These were entered into the stem profile 

under the assumption that they may have been standing at the time of the airborne lidar 

(Light Detection And Ranging) survey in August of 2004 (Chapter 4). Standing snags 

were measured to tops, appearing in the stem profiles as “unfoliated bole” only. Of 133 

original stems (as of 1996) in plot 65, 56 were located and measured. 64 of the 85 

original stems were located standing in plot 12, yet only 12 had living foliage, and most 

of these were impacted and unhealthy; of the others standing, all were broken. 13 

additional stems were found on the ground and 8 were not found. 

 

2.2.6. Principal components data reductions 

 To reduce the complexity of the preceding biophysical data, plot-level values of 

BA, maxage, PAI, HPCD, and SCA were entered into a principal components analysis 

(PCA; see Sneath and Sokal 1973) using the SAS “princomp” procedure (SAS Institute 
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2002-2003). The technique is a multivariate factor analysis that clarifies underlying linear 

combinations of original factors to explain much of the variation in samples (Sokal and 

Rohlf 1995). The results are generally two to three new orthogonal variable axes for 

concise spatial depiction of sample relatedness and dominant variation-alignment. MCH 

was not included in the biophysical PCA because of its over-riding influence as a site 

index (SI) determinant (tall canopies are on better sites), and because it is highly 

intercorrelated with the other canopy factors that are better suited to describe a biomass 

continuum on shorter time scales. Vol and HPCD slightly outperformed MCH in a test 

PCA (loading the first PC in top three descending order, respectively) providing some 

evidence that these are better candidates in depicting general biophysical stature at the 

plot level, while integrating average canopy height. 

 The above procedures were replicated with the abiotic environmental variables to 

create an environmental PC space. Bare earth elevation (BEE), distance to ocean 

shoreline (distshore), DWT, maxage, SOM, and STI populated this PCA. Maxage was 

utilized in both ordinations because it expresses biophysical and abiotic effects that 

would otherwise be too labor-intensive to depict in exclusive ways. Maximum stand age 

imparts a developmental constraint on otherwise similar heights or basal areas. Time 

since disturbance is also represented in maxage to an extent, and on barrier islands this 

will integrate many processes of soil and water environment development. Human 

interventions that could variably influence maxage were not analyzed. 

 All sites were plotted in biophysical and environmental PC space by regressing 

their PC2 scores against their PC1 scores in the two analyses. Cluster analysis by SAS 

“cluster” procedure (SAS Institute, 2002-2003) provided for the final classification into 
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biophysical and environmental types (“bio-types” and “site types”, respectively) based on 

average distance in PC space. The interoperability of the groupings was assessed by 

analysis of variance (with the SAS “glm” procedure, SAS Institute 2002-2003) of 

biophysical variables by environmental type. 

 

2.2.7. Dendrochronological analysis 

 One tree-ring core was drawn from at least one dominant, co-dominant, and 

intermediate/or subcanopy P. taeda tree in each plot using an increment borer. After 

significant drying time, the cores were mounted on grooved poplar wood blocks with 

wood glue. When these were dry, the cores were sanded to a smooth, glossy finish. Ring 

widths were measured to 0.001mm precision on a Velmex (Velmex Inc., Bloomfield, 

NY) measurement stage system, and the data were catalogued and dated with Medir (RL 

Holmes, Laboratory of Tree Ring Research - LTRR) software.  

 Individual series (annual ring-width increment over sampled time) dating was 

accomplished by using only live trees so that the dates would merely reverse from the 

year of coring to the pith at the center (at dbh – and therefore several years old at that 

height). There were generally too few total multiple-sample years per site to enable 

effective ‘crossdating’ (Fritts 1976) among series to thoroughly verify dates, but this is a 

less critical concern as ten-year spans were averaged.  

 To create average bio-type initiation growth trend replicates, series samples that 

were of approximately shared age and average canopy position, and had at least a 20-year 

period in common were grouped from representative plots. Having cored at tree dbh, raw 

trend data were drawn from at least two years after dbh age (a few very young samples 
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necessitated a one year + dbh buffer) to reduce further the potential influence of shading 

on growth. Grouping by similar age aids in reducing confounding effects of disparate 

stand initiation events. The final growth trend endpoints are centered at midpoints of the 

two ten-year periods, with the respective average ten-year ring width value. 

 The COFECHA (RL Holmes, LTRR) program was used to create master 

chronologies (MC) of ring width index (RWI) values for the site type series populations. 

The RWI is a transformed value derived from the standardization (Fritts 1976) of the 

sample series and their subsequent averaging. Standardization by COFECHA removes 

low-frequency trends related to common age-size relationships (Grissino-Mayer 2001) 

that would confound environmental signals. Site type MC’s were assigned ‘mean 

sensitivity’ (Fritts 1976) values as a measure of variability in ring width useful in 

comparing site effects (pers. comm. K Hadley). Fritts (1976) states “the more the tree has 

been limited by environmental factors, the more the tree will exhibit variation in width 

from ring to ring.” 

 Site type MC’s were also applied in gauging a site’s modulation effect on 

common climate during particular times of year. Each annual index value of an MC was 

tested for correlation with monthly temperature and precipitation of a 17-month period of 

interest from the previous May through the current September (Fritts 1976, Webb et al. 

1993). The correlations were run using SAS (SAS Institute, 2002-2003) software and a 

program code written by Fekedulegn et al. (2002).  
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2.3. Results 

 

2.3.1. Plant area index 

 In the 2005 field season PAI increased from Spring (there was generally a mid-

April start of measure) through late Summer for most sites, with maximum values 

recorded from September 13 to October 19. Note that measurements are paced somewhat 

widely and may not represent actual extrema (Figure 2; vertices in graphs mark 

measurements). Several plots are not trending down as of the last Fall-measured PAI, and 

if they continued to rise this would result in the underestimation of the calculated annual 

range and average (see 21902 in bio-type 1a for example; Fig. 2). It seems however, that 

readings must decline soon after because, for example, P. taeda LAI peaks in September 

in the “sandhills” of North Carolina (Sampson et al. 2003), about 580km to the southwest 

of AINS. 
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Figure 2. 2005 PAI readings by the sub-bio-types (less outlier type). Vertex positions denote times of 
measurement. 
 

 The spikes recorded around October 18-19 after troughs for plots 29202, 29201 

(bio-type 1a), and 28307, 28506 (bio-type 1b) appear to correspond with a slowing rate of 

decline in other plots (Fig. 2). It is feasible that an anomalous sky condition occurred 

around these two days such that the difference between above-canopy and below-canopy 

as determined by the LAI-2000 is less than the preceding measure. This may occur if 

there is discontinuous cloud cover.  

 To evaluate the interrelatedness at plot level of projected plant area and the 

common forest metrics, the biophysical variables: plot average tree height (PTH), MCH, 
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HPCD, BA, and vol are tested in their predictive power for PAI (average 2005) in a 

multiple regression exercise (Figure 3). Somewhat surprisingly, only MCH is retained at 

a significant level (p=0.06) with the resultant equation: 

                                Average 2005 PAI = 0.8415 + 0.1037 (MCH)                                  (1) 

where R2=0.40 and RMSE= 0.70. The PAI fluctuation value (PAI range:PAI average; see 

Appendix C) is poorly modeled at R2 =0.18 with only MCH retained in a multiple 

regression with the same biophysical metrics as above. 

Average 2005 PAI=0.8415+0.1037(MCH)

R2 = 0.40
RMSE=0.70

1

2

3

4

0 1 2 3 4 5

 
Figure 3. Predicted PAI by multiple regression (max 
canopy height is retained) against field average PAI 
(2005). 

 

2.3.2. Litter 

 Patterns of litterfall are discernable (Figure 4) yet they are too coarse to allow for 

material loss calculations with change in soil moisture and other environmental indices. 

There are rough negative correlations in PAI and litterfall as would be expected. The 

resulting pattern does follow a similar one outlined by Gresham (1982) for P. taeda on 

the North Carolina coastal plain (for two out of three years in his study): a peak occurred 



 

 

31
in early September, then a trough, and finally a large peak in the late fall. Comparing this 

to the PAI information in Figure 2, it is noted that a number of plots reach maximum PAI 

from mid-July to mid-August, during the first drop in litterfall rates and the slight rise 

towards September 1. The other discernable PAI peaks then occur in early September 

around the falling rates of litterfall after small peaks. Finally, the average litterfall rate for 

2005 does trend with broad bio-types (Table 1), i.e. the larger bio-type 1 has greater 

litterfall rates than the smaller bio-type 2, though it does not correlate to a high degree 

with plot volume as there may be an underlying abiotic influence. At the current 

resolution, however, there are no significant correlations between litterfall and DWT (not 

shown) for all bio-types and times. 
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Figure 4. The average litterfall (leaves only) through 2005 
monitoring, in kg ha-1day-1 for individual sites (n=10). Plot 
21903 is not represented here as it skews the chart by a very 
large needle drop late in the year. 
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Outlier 21903 0.62 199.76
1b 28307 0.44 368.07
1a 21901 0.43 241.51
1a 27703 0.40 198.88
1a 29202 0.32 292.56
2b 28703 0.32 144.91
2a 21801 0.26 57.62
2a 29205 0.22 82.06
2b 29803 0.18 113.53

2005 Litter Rate 
(kg ha-1day-1)

Bio-type Plot Volume (m3)

 
 
Table 1. Litter rates by monitoring plots (n=9) and associated 
bio-type for the total monitoring period (about 114 days) of 
2005, with total plot parabolic volume noted. Data are listed in 
order of descending litter rate. 

 

2.3.3. Crown ratio and HPCD 

 The crown ratios (foliated crown:total tree height) at AINS are very similar 

among bio-types (about 45%), with bio-type 2a anomalous at 53% (Table 2; see Figure 

5a-5c and Appendix A for graphical data; note that the stem profile examples in Figure 

5a-5c are from the water plots). Alternatively, HPCD in plots is quite characteristic of 

bio-types as seen in Table 4 where HPCD loads the first principal component more than 

the other metrics. HPCD values can be assessed directly from the frequency histograms 

of Figures 5a-5c and Appendix A. 

 

1a (n=8) 46 10
1b (n=4) 45 8
2a (n=4) 53 5
2b (n=3) 45 5

Average Crown 
Ratio (%)

Standard 
DeviationBio-type

 
 
Table 2. The average crown ratios (crown 
length:tree height) and standard deviations 
for the bio-types less outlier type 3.  
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Figure 5a. Example canopy presence frequency spectrums (left) and tree stem profile charts (right) from 
water-monitoring field plots of bio-type 1. Foliated crown lengths in profiles are shaded (■); unfoliated 
bole lengths are open (□). Arrows indicate the maximum canopy height (m) listed in center of figure. 
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Figure 5b. Example canopy presence frequency spectrums (left) and tree stem profile charts (right) from 
water-monitoring field plots of bio-type 2. Foliated crown lengths in profiles are shaded (■); unfoliated 
bole lengths are open (□). Arrows indicate the maximum canopy height (m) listed in center of figure. 
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Figure 5c. Example canopy presence frequency spectrums (left) and tree stem profile charts (right) from 
the water-monitoring field plot of the outlier bio-type. Foliated crown lengths in profiles are shaded (■); 
unfoliated bole lengths are open (□). Arrows indicate the maximum canopy height (m) listed in center of 
figure. 
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Figure 5d. Example canopy presence frequency spectrums (left) and tree stem profile charts (right) from 
the PIVCR field plots of the original monitoring network. Foliated crown lengths in profiles are shaded (■); 
unfoliated bole lengths are open (□). Arrows indicate the maximum canopy height (m) listed in center of 
figure. Missing and dead trees are represented by gaps in the stem profile. PIVCR 91 data are from an 
incomplete sample. 
 

 PIVCR stem profile charts in Figure 5d exhibit the loss of the majority of biomass 

since 1996 (date of last measurements). Gaps in the stem profile chart represent fallen 

stems (except in plot 91 where data are incomplete; this plot was unaffected by the 

disturbances). Using Richardson, Porter, and Shugart (1996) data (available from VCR-

LTER website data archive) as initial condition, woody canopy volume reduction is at 

least 75% at plots 12 and 65 since the 2002 disturbances. This likely underestimates 

island-wide change as the plots surveyed are those that appeared least affected by the 

disturbances. 
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2.3.4. Principal components analysis: biophysical and environmental classification 

 The raw data for the AINS PCA are in Table 3. Table 4 lists the 5 new principal 

component variables (PC1-PC5) and the constituent original variables of the biophysical 

analysis. Note that the original metrics are listed in descending order of eigenvector 

loading of PC1. HPCD variation loads PC1 at the highest rate (0.58), with BA and 

maxage the next nearest at similar rates (0.55 and 0.53, respectively). PC2 is comprised 

of SCA to a great extent (0.74), and then PAI (0.66). 

 

Plot PAI Vol MCH HPCD SCA BA Maxage DWT SOM STI Distshore BEE
19001 1.8 258.5 17.7 12.0 13.1 34.4 65 0.43 0.95 0.09 806 0.57
19002 2.1 230.3 13.9 9.9 179.9 40.0 58 0.18 1.01 0.13 705 0.42
20901 3.3 --- --- --- --- --- 24 0.21 1.08 0.08 679 0.36
21801 1.7 57.6 8.1 3.4 175.0 19.0 21 0.33 1.31 0.06 346 0.34
21901 2.1 241.5 22.8 13.5 5.9 29.7 63 0.71 1.58 0.16 1013 1.34
21902 1.4 191.0 14.1 9.3 40.0 34.1 61 0.21 2.13 0.13 932 0.40
21903 3.2 199.8 16.3 10.8 847.4 29.9 64 0.29 1.18 0.12 1079 0.18
27701 2.7 118.2 11.2 6.0 57.1 28.3 23 0.33 1.25 0.10 329 1.18
27703 2.7 198.9 15.4 10.5 1.8 32.9 40 0.55 0.87 0.10 631 1.03
27704 3.0 406.7 22.9 15.5 149.3 41.9 42 0.32 1.01 0.13 691 0.77
28304 4.7 134.8 17.9 4.5 836.3 20.8 11 0.36 3.59 1.00 1389 0.41
28307 3.0 368.1 24.4 18.0 18.5 35.2 54 0.57 7.62 1.13 1327 0.53
28506 3.3 469.6 29.2 18.8 326.0 38.2 90 0.37 22.09 0.72 1015 0.46
28702 2.7 188.2 14.6 9.0 0.0 31.1 56 0.54 2.82 0.09 421 0.51
28703 2.2 144.9 10.1 7.3 106.2 33.8 29 0.39 4.43 0.10 294 0.92
28704 1.9 92.2 12.4 4.8 62.7 28.2 13 0.22 1.30 0.10 268 0.91
29201 1.9 150.0 10.9 7.2 41.6 33.9 44 0.23 3.70 0.14 390 0.73
29202 2.6 292.6 22.5 10.5 0.0 39.5 67 1.20 2.29 0.17 509 1.36
29203 1.8 181.3 15.5 8.7 0.0 31.6 54 0.45 0.97 0.16 475 0.75
29205 1.1 82.1 11.7 6.3 0.0 20.3 34 0.51 1.50 0.13 383 0.86
29503 3.5 280.0 17.1 13.6 24.2 39.1 51 0.23 4.27 0.54 502 0.27
29504 1.5 89.7 10.7 5.1 67.8 21.8 33 0.41 1.74 0.11 448 0.22
29505 3.0 220.2 16.8 6.8 198.8 34.7 44 0.53 2.72 0.22 598 0.51
29506 1.7 108.3 12.2 6.3 246.1 27.3 26 0.29 1.63 0.12 369 0.52
29801 1.3 69.2 8.6 5.0 206.4 20.2 28 0.25 1.01 0.09 444 0.04
29802 3.1 373.4 22.8 16.5 18.0 39.5 64 0.45 13.22 0.14 548 0.14
29803 1.8 113.5 12.1 5.5 238.6 25.0 29 0.33 0.59 0.08 437 0.15

BIOPHYSICAL ENVIRONMENTAL

 
 
Table 3. The variables and plot values (n=27; plot 20901 was not measured for most biophysical traits) that 
were used to derive principal components (PC) and group sites into biophysical and environmental types by 
cluster analyses of PC scores. PAI is study period (2004-2006) average plant area index in m2/m2; Vol is 
parabolic volume (m3); MCH is the maximum canopy height (m); HPCD is the height (m) of the peak 
canopy density; SCA is area (m2) of shrub canopy dripline; BA is basal area (m2); Maxage is the maximum 
age of trees in years; DWT is depth to water table (m; point-in-time); SOM is soil organic matter (%) from 
the top 10 cm of soil; STI is the soil texture index (fine sand:medium sand); Distshore is distance (m) from 
the ocean shoreline; BEE is bare earth elevation (m). 
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PC1 PC2 PC3 PC4 PC5

HPCD 0.58 0.00 0.07 -0.58 0.57
BA 0.55 -0.09 -0.36 0.72 0.22

Maxage 0.53 -0.12 0.64 0.07 -0.54
PAI 0.28 0.66 -0.48 -0.23 -0.46

SCA -0.10 0.74 0.48 0.30 0.34  
 
Table 4. Eigenvector loading values of the biophysical variables in the 
resultant 5 principal components.  

 

 Applying the Kaiser (1960) rule, only PC1 and PC2 are accepted for further 

analysis because their eigenvalues of the PC correlation matrix are greater than 1 (not 

shown). Biophysical PC1 and PC2 explain 83% of total variation of the new factor data 

set. The ‘scores’ of all plots for PC1 and PC2 are listed in Table 5. These are the raw 

plotting data for Figure 6 (PC2 on PC1) from which the cluster analysis determines 

relatedness (average distance) producing the dendrogram of Figure 7. Subsequent 

classifications into types is based on visual inspection of the dendrogram.  
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Plot PC1 PC2

19001 1.03 -1.04
19002 1.03 -0.30
21801 -2.66 -0.16
21901 0.88 -0.78
21902 0.38 -1.28
21903 0.56 2.85
27701 -1.13 0.10
27703 0.33 -0.21
27704 1.81 0.40
28304 -1.93 4.43
28307 1.98 -0.03
28506 3.26 0.96
28702 0.42 -0.31
28703 -0.54 -0.20
28704 -1.84 -0.42
29201 -0.19 -0.73
29202 1.56 -0.55
29203 0.06 -1.02
29205 -1.95 -1.33
29503 1.79 0.33
29504 -1.89 -0.76
29505 0.10 0.60
29506 -1.51 -0.06
29801 -2.31 -0.41
29802 2.42 -0.08
29803 -1.68 0.01  

 
Table 5. Scores of all 
plots in the first two 
biophysical principal 
components.  
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Figure 6. PC space in the biophysical principal components analysis (PCA). Scores by plot for PC2 are 
plotted against scores for PC1. 
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Figure 7. The dendrogram of cluster analysis results of the PC space functions developed with 
the plot biophysical features. Average distance in PC space between plots is on the y-axis. Plots 
are listed individually at terminating branches. SAS (SAS Institute 2002-2003) graphical output. 

 

 Table 6 lists the 6 principal component variables (PC1-PC6) and the original 

variables of the environmental analysis. PC1 is loaded equally by distshore and STI at 

0.52. SOM also comprises a fair amount of the variation for PC1 at 0.49. PC2 is loaded 

by DWT at 0.68, then BEE at 0.66.  
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PC1 PC2 PC3 PC4 PC5 PC6

Distshore 0.52 -0.08 0.41 -0.51 0.21 0.50
STI 0.52 -0.14 0.50 0.32 -0.12 -0.59

SOM 0.49 -0.07 -0.42 0.63 0.08 0.42
Maxage 0.43 0.26 -0.58 -0.43 0.18 -0.44

DWT 0.15 0.68 0.08 -0.01 -0.69 0.17
BEE -0.09 0.66 0.26 0.25 0.65 -0.02  

 
Table 6. Eigenvector loading values of the environmental variables in the resultant 
5 principal components. 

 

 As the PC1 and PC2 variables explain just 67% of the total variation of the new 

factor data (though theirs are the only eigenvalues greater than 1), PC3 (loaded by 

negative association with maxage) is included in a test cluster analysis. In another test, 

maxage is eliminated from the PCA. Both exercises led to less intuitive classifications 

(not shown) based on site knowledge. The lower explained variation in the first two PC 

variables is due to the lower correlation among the original environmental variables 

compared to that in the biophysical PCA. Note that plot 20901 is included in the 

environmental PCA, but not in the biophysical analysis due to lack of data (Table 3). The 

plot environmental PC scores are in Table 7, the PC space regression in Figure 8, and the 

resulting dendrogram of cluster analysis in Figure 9. 
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Plot PC1 PC2

19001 0.28 0.39
19002 -0.11 -0.79
20901 -0.95 -1.22
21801 -1.49 -0.81
21901 0.79 2.59
21902 0.49 -0.77
21903 0.79 -0.89
27701 -1.62 0.74
27703 -0.59 1.34
27704 -0.47 0.10
28304 2.03 -1.50
28307 3.67 -0.13
28506 4.61 -0.38
28702 -0.27 0.59
28703 -1.10 0.50
28704 -1.95 -0.23
29201 -0.68 -0.21
29202 0.47 4.40
29203 -0.42 0.69
29205 -1.00 0.86
29503 0.58 -1.19
29504 -0.83 -0.67
29505 -0.01 0.29
29506 -1.27 -0.59
29801 -1.13 -1.56
29802 1.36 -0.49
29803 -1.16 -1.07  

 
Table 7. Scores of all 
plots in the first two 
environmental principal 
components. 
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Figure 8. PC space in the environmental principal components analysis (PCA). Scores by plot for PC2 are 
plotted against scores for PC1. 
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Figure 9. The dendrogram of cluster analysis results of the PC space functions developed 
with the plot environmental features. Average distance in PC space between plots is on the 
y-axis. Plots are listed individually at terminating branches. SAS (SAS Institute 2002-2003) 
graphical output. 

 

 Final plot classifications into bio-types 1a, 1b, 2a, 2b, and 3; and site types 1a, 1b, 

2, 3, 4, and 5 are listed in Tables 8 and 9, respectively. Note that integer sub-types (a, b) 

are more closely related than cross-integer (1, 2) types (see dendrograms of Figures 8 and 

9). All groups are mapped at AINS in Figures 10 and 11.  
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1A 1B 2A 2B Outliers
19001 27704 21801 27701 21903
19002 28307 28704 28703 28304
21901 29503 29504 29506
29202 29802 29801 29803
21902 28506 29205
29201 20901*
29203
27703
28702
29505

Plots

Biophysical Types

 
 
Table 8. Biophysical sub-types derived by principal 
components analysis of structural variables and cluster 
analysis of PC scores. The Outlier group is excluded from 
most analyses. *This plot is included in 2A based on 
visual estimation only. 

 

1A 1B 2 3 4 5
19001 27701 21801 19002 21901 28307
27704 27703 28704 21902 29202 28506

Plots 28702 28703 29504 21903
29201 29205 29506 28304
29203 29801 29503
29505 29803 29802

Environment Site-Types

 
 
Table 9. Site-types derived of environmental variable principal 
components analysis, and the cluster analysis of PC scores by 
individual plots. 
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Figure 10. Map of the AINS biophysical (bio)-type groups divided into Northern and Southern regions. 
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Figure 11. Map of the AINS environmental (site) type groups divided into Northern and Southern regions. 
 



 

 

46
 The patterns of magnitude and variation in original metrics by new organizational 

type are graphed in Figure 12 (biophysical values of the 5 bio-types) and Figure 13 

(environmental values of the 6 site types). The tabular counterparts of these figures are 

Tables 10 (bio-type values) and 11 (site type values). 
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Figure 12. Graphical comparisons of the sub-bio-types in magnitudes and variation of sample 
population statistics for HPCD (height of peak canopy density, m), BA (basal area, m2 ha-1), SCA 
(shrub canopy dripline area, m2 plot-1), PAI (plant area index, m2 m-2), and maxage (maximum tree 
age, years) where ‘3a’ is the outlier type. The bars represent one +/- standard deviation (s). 
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Figure 13. Graphical comparisons of all environmental site-types in magnitudes and variation of 
sample population statistics for distshore (distance from ocean shoreline, m), STI (soil texture index, 
fine sand:medium sand), SOM (soil organic matter, %, top 10cm), BEE (bare earth elevation, m), 
DWT (depth to water table, m), and maxage (estimated time since tree colonization at site, years). 
The bars represent one +/- standard deviation (s). 
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1a 1b 2a 2b 3
n 10 5 5 4 2

Avg. 9.74 16.47 4.92 6.25 7.65
HPCD s 2.04 2.04 1.04 0.74 4.45

CV 21 12 21 12 58
Avg. 34.19 38.77 21.87 28.59 25.36

BA s 3.34 2.42 3.65 3.72 6.39
CV 10 6 17 13 25

Avg. 48.11 107.21 102.37 162.02 841.82
SCA s 76.20 134.50 85.65 94.96 7.86

CV 158 125 84 59 1
Avg. 2.22 3.18 1.51 2.10 3.95

PAI s 0.51 0.21 0.33 0.45 1.05
CV 23 6 22 21 27

Avg. 55.20 60.20 25.80 26.75 37.50
Maxage s 9.55 18.42 8.81 2.87 37.48

CV 17 31 34 11 100

Bio-types

 
 
Table 10. The sample population statistics (average, standard 
deviation, and coefficient of variation) for the PCA variables: HPCD 
(height of peak canopy density, m), BA (basal area, m2 ha-1), SCA 
(shrub canopy dripline area, m2 plot-1), PAI (plant area index, m2 m-2), 
and maxage (maximum tree age, years). Note bio-type ‘3’ is the outlier 
group. CV is in %. 
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1a 1b 2 3 4 5
n 6 4 6 6 2 2

Avg. 563.31 409.27 427.33 858.86 761.12 1170.69
Distshore s 149.85 131.83 119.36 311.53 252.01 156.17

CV 27 32 28 36 33 13
Avg. 0.14 0.11 0.09 0.34 0.16 0.92

STI s 0.04 0.01 0.02 0.33 0.01 0.20
CV 31 13 20 96 5 22

Avg. 2.03 2.01 1.24 4.23 1.93 14.86
SOM s 1.10 1.41 0.36 4.19 0.35 7.24

CV 54 70 29 99 18 49
Avg. 0.64 1.00 0.36 0.30 1.35 0.50

BEE s 0.11 0.12 0.27 0.11 0.01 0.04
CV 18 12 73 37 1 7

Avg. 0.42 0.44 0.29 0.29 0.95 0.47
DWT s 0.11 0.09 0.07 0.09 0.25 0.10

CV 27 20 23 33 26 21
Avg. 50.83 31.50 24.86 51.50 65.00 72.00

Maxage s 8.25 6.26 5.99 18.64 2.00 18.00
CV 16 20 24 36 3 25

Site-types

 
 
Table 11. The sample population statistics (average, standard deviation, and coefficient 
of variation) for the PCA variables: distshore (distance from ocean shoreline, m), STI 
(soil texture index, fine sand:medium sand), SOM (soil organic matter, %, top 10cm), 
BEE (bare earth elevation, m), DWT (depth to water table, m), and maxage (estimated 
time since tree colonization at site, years). CV is in %. 

 

 In order to demonstrate the predictive power of the clusters, an analysis of 

variance (ANOVA) with the SAS glm (general linear model) procedure (SAS Institute 

2002-2003) is performed on the major biophysical metrics as expressed by site types. 

Among the six variables tested, site explains 76% of the variation in MCH, 69% in 

volume, and 66% in HPCD (Table 12). BA and PAI are more invariant at 49% and 39%, 

respectively. All coefficients of determination are significant at p<0.01 except PAI 

(p=0.06).  
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MCH 0.76
Vol 0.69

HPCD 0.66
Maxage 0.62

BA 0.49
PAI 0.39

Metric
Coefficient of 

Determination, r2

 
 
Table 12. ANOVA results to test 
indication of site-type by the major 
biophysical parameters. Results are 
interpreted as the fraction of 
variation explained by site 
groupings in each biophysical 
variable. 

 

2.3.5. Dendrochronological analyses 

 Figures 14a and 14b display the initiation growth trendlines, and Table 13 the 

processed trend data for the six bio-type/age group divisions. All bio-type (BT) 1 

configurations (sub-type/stand age) decline in growth more slowly than bio-type (BT) 2 

configurations (not including BT1b 2-3 decade; but these are not representative samples 

as they comprise only two plots for a total of two composites). Note that bio-type 2 is 

limited to 2-3 decade samples. The 4-5 decade samples and 2-3 decade samples in bio-

type 1a are very similar in trajectory. This may indicate the effectiveness of site grouping 

here with similarity in growth of distinct cohorts likely due to site effects; the difference 

in growth seen across bio-types may therefore be reasonably attributed to site. The rare 

inclining trends seem to signify even-agedness, E.g., BT1a-7 (includes plots 28702 and 

21902); as does a very slowly decreasing rate, E.g., BT1a-2 (plots 19001, 19002). 

Comparing the average growth rate from raw endpoint data (not shown) on which 

Figures 14a-14b and Table 13 are based, results in bio-type 1a 2-3 decade chronologies  

(-42%) declining about 27% slower than bio-type 2b chronologies (-69%). 
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Figure 14a. Bio-type 1 subdivision post-dbh 20-year growth trends (data averaged from 5 years beyond 
either endpoint) for 40 year old+ stands (top) and 20 year old+ stands (bottom). 
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Figure 14b. Bio-type 2 subdivision post-dbh 20-year growth trends (data averaged from 5 years beyond 
either endpoint) for the 20 year old+ stands. 
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BT1a-1 -1.97 0.69 21901 codom 21901 dom
BT1a-2 -0.38 -1.17 19001 dom 19002 dom
BT1a-3 -2.25 1.02 29202 dom 29203 codom
BT1a-4 -1.99 0.71 19002 codom
BT1a-5 -1.45 0.08 29203 dom 19001 intermed
BT1a-6 -1.59 0.24 29203 intermed 29202 subcan
BT1a-7 0.52 -2.22 28702 dom 28702 codom 21902 codom
BT1a-8* -0.02 -1.59 29201 codom 29505 subcan 21902 intermed

Average (Alt.) -1.38 (-1.60)
s 0.85

BT1a-9 -0.96 -0.51 29201 intermed 29201 dom
BT1a-10 -1.03 -0.39 27703 codom 27703 intermed
BT1a-11 -0.63 -1.15 27703 dom 29505 dom
BT1a-12 -1.62 0.74 19002 intermed
BT1a-13 -1.92 1.31 29505 intermed

Average -1.23
s 0.52

BT1b-1 -0.44 -1.05 28702 intermed 28307 dom
BT1b-2 -0.39 -1.11 28506 intermed 28506 codom
BT1b-3 -1.82 0.49 29503 subcan 28902 codom
BT1b-4 -2.05 0.76 29503 dom 29802 codom
BT1b-5 -2.19 0.91 27704 intermed 29503 dom

Average -1.38
s 0.89

BT1b-6 -3.56 0.71 27704 dom 27704 codom
BT1b-7 -1.52 -0.71 28307 codom 28307 intermed

Average -2.54
s 1.44

BT2a-1 -2.21 -1.01 29205 dom 29504 dom
BT2a-2 -3.02 0.56 29205 codom 29801 codom
BT2a-3 -2.39 -0.66 29504 codom 29205 intermed 29801 dom
BT2a-4* -3.31 1.11 29504 subcan 29801 dom

Average (Alt.) -2.73 (-2.54)
s 0.52

BT2b-1 -5.11 1.13 28703 codom 29803 dom
BT2b-2* -3.13 -0.56 29803 subcan 28703 dom
BT2b-3 -4.53 0.63 28703 intermed 29506 dom
BT2b-4 -4.03 0.21 29506 codom 27701 dom 20901 dom
BT2b-5 -2.13 -1.41 29803 codom 27701 codom

Average (Alt.) -3.78 (-3.95)
s 1.18

Bio-type 2b, 2-3 decade samples

Trend 
chronology ID

Departure from average 
(in standard deviations)

10 year change in average 
ring width (mm)

Plots included in trend chronology; canopy            
position of sample tree

Bio-type 1a, 4-5 decade samples

Bio-type 1a, 2-3 decade samples

Bio-type 1b, 4-5 decade samples

Bio-type 1b, 2-3 decade samples

Bio-type 2a, 2-3 decade samples

 
 
Table 13. All bio-type ring width increment changes between ten-year averages initiated from 1-2 years 
after age at dbh. Departures from bio-type averages are assessed for each composite chronology, and the 
component plots and the sample stand positions (subcan=subcanopy; intermed=intermediate; 
codom=codominant; dom=dominant) are listed for each composite. Type average rates in parentheses () are 
values determined by excluding samples of cross-cohort (E.g., subcan and dom) origination denoted by *. 
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 Some general conclusions about bio-type environments can be made. The 

overriding effect on growth rates may be DWT. Bio-type 1 (a and b) long-term average 

DWT is 0.80m (n=5), and bio-type 2 (a and b) average is 0.44m (n=5). These conditions 

interact with the beneficial effects of higher elevation at island interiors of increased 

protection from storm surge effects to water source, and physical effects of salt spray and 

wind. Protection allows for water table accession by more slowly establishing, stable 

stands. A rooting habit and water table access theory of structural determination is 

thoroughly covered in Chapter 3. 

 In testing the general site effect on growth, the mean ring width chronology 

sensitivity does correlate strongly negatively (rs=-0.99, p=0.0003) with site index (SI) as 

traditionally represented by MCH (Figure 15). The mean sensitivity values are: Site type 

(ST)-5, 0.221; ST-4, 0.239; ST-3, 0.290; ST-2, 0.308; ST-1b, 0.308; and ST-1a, 0.293.  
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Figure 15. Site type master tree ring chronology 
mean sensitivity ( ● ) and maximum canopy height 
(■).  

 

 Climate correlations are in Figure 16. These support the sensitivity interpretation. 

The number of significant correlations is greater in the site types with lower SI (ST-2, 1b 

and 1a) than those with greater SI (ST-3, 4, and 5). Broadly comparing sites between the 
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SI levels, temperature plays a more important role in the smaller stature sites. Across all 

sites, fewer significant interactions occur with precipitation. A section of the 

“Discussion” is devoted to the interpretation of individual results as related to site 

ecohydrology and attendant development. 
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Figure 16 (previous page). Pearson (r) correlations between yearly tree ring radial increment and the 
months of a 17-month climate activity cycle (previous May – current September). The banded columns are 
months that are significant to at least p=0.1 (and generally more so). 
 

 The component series of the site type MC’s used in the climate correlations are 

listed in Table 14 with their canopy strata position. The inclusion of subcanopy and 

dominant mixtures in ST-1a and ST-2 should be noted as this could contribute 

erroneously to some of the significance. This possibility is minimized as the raw series’ 

(used to create the MC) intercorrelation is above the COFECHA (RL Holmes, TRRL) 

critical level (at p=0.01) in ST-2 (r=0.538 for critical level 0.516), and close in ST-1a 

(r=0.446 for critical level 0.453). 

 

Site type
1a 28702 28702 29203 27704 29505*

codom dom dom dom subcan
1b 29205 29205 29205 28703 28703 27703

interm dom codom dom codom dom
2 29803 29803 29803 29801 29801 29801 29504 29504 29506

codom dom subcan codom dom dom codom subcan dom
3 29802 29503 21903 29202 19002

codom dom codom dom dom
4 21901 29202

codom dom
5 28307 28506 28506

interm interm codom

Sampled plots/canopy positions

 
 
Table 14. List by site type of the plots contributing samples to the site type master 
chronologies developed for the climate correlation analyses. Canopy position is denoted 
for each sample.  
 *Though it is in the subcanopy strata of this plot, the sample from 29505 is an 
older open-grown individual with relatively large basal area. 
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2.4. Discussion 

 

2.4.1. Plant area index 

 Statistically significant differences in PAI are measured among the AINS bio-

types as 73% of variation in average PAI is explained by bio-type (SAS Proc GLM 

analysis, not shown). The LAI-2000 instrument is also sensitive enough to be used at 

AINS for intra-seasonal leaf area change (see Figure 2) within plots.  

 The annual PAI fluctuation statistic (Appendix C) is a rough estimate of a foliage 

cohort contribution to light-blocking area. As there are no clear start and end points in our 

field data, a pure areal increase from a minimum is unwarranted. Definitive statements 

about leaf area change through our fluctuation proxy will wait for more comprehensive 

study. Based on the sensitivity of PAI within AINS plots there is clear potential for an 

ecosystem-specific PAI to LAI predictive linear relationship to be developed along the 

lines of Gower and Norman (1991), and Stenberg et al. (1994) with verification by a field 

estimate of LAI (E.g., by needlefall estimate). Also, Sampson et al. (2003) detail a 

dynamic non-linear leaf area growth and abscission relationship with LAI-2000 PAI 

temporal change (also see Sampson and Allen 1995) that could provide a model for 

future analyses.  

 The lack of a highly predictive relationship between PAI and “coarse” stand 

metrics (Figure 4) could be a matter of lacking a true annual average PAI for all plots. 

Alternately, perhaps parsing the stand metrics to distributional statistics from all stem 

diameters (Van Laar and Acka 2007), for example, could improve agreement as the LAI-

2000 is dependent on the arrangement of light-blocking elements (Smolander and 
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Stenberg 1996; Sampson and Allen 1995) in addition to pure size. Long and Smith 

(1990) note that LAI can be rather invariant across some broad structural divisions. 

 

2.4.2. Crown Ratio 

 Though, as Nagel and O’Hara propose, “greater crown length [in multi-aged 

compared to even-aged stands] result[s] in different light regimes that may influence 

ecophysiological leaf traits” such as gas exchange, leaf Nitrogen, and specific leaf area, 

crown ratio alone is not a good stand structural indicator (Table 2) at the scale (bio-type) 

at which monitoring should be done. HPCD, however, is a site-variant crown distribution 

index similar in theory to the Weibull distribution parameters used by Xu and Harrington 

(1998). HPCD distills canopy structure distribution as it relates to site energy and 

material fluxes, especially evapotranspirational feedbacks (see Chapter 3), in a very 

simplified manner. The crown presence frequency histograms (Figs 5a-5d, App. A) 

roughly approximate the stand-level “foliage-height profiles” Aber et al. (1982) 

developed to differentiate structural expression along a moisture gradient in New 

England. The histograms are used further in Chapter 4 to compare canopy distribution 

principal components to lidar return principal components. 

 

2.4.3. Dendrochronological analyses 

 The 20-year growth trends decline faster in bio-type 2 than in bio-type 1. P. taeda 

is shade-intolerant, and even if individuals are shade-established, Shelton and Cain 

(2000) note that shade tolerance decreases with age in shade-grown seedlings. Within a 

few years after attaining dbh, rather common long-term growth patterns could then be 
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expected among individuals that have attained the present canopy. It is then feasible to 

attribute growth differences between classes to site effects. As shade-suppressed survival 

is limited to a few years, tree aging results are determined to be reliable. Separating the 

chronologies into age groups further controls growth effects related to stand 

developmental issues, allowing for testing of environmental effects. 

 Johnson and Young (1992) posit that more stationary chronologies are indicative 

of an overall more stable habitat on PIVCR compared to Hog Island of the VCR. Studies 

in the Florida barriers point to water availability as a general vegetation stabilizer from 

evidence in swale communities along a geomorphic gradient (Snyder and Boss 2002). It 

seems likely, after accounting for the over-riding influence of island position as it relates 

to storm and surge vulnerability, that variance remaining in growth at AINS is due to 

average DWT and root competition for the respective water sources: vadose precipitation 

in shallow soils of bio-type 2, and groundwater table in deeper soils of bio-type 1 (also 

see Chapter 3).  

 In shallow soils, it appears that vegetation utilizes water preferentially from the 

profile and not the water table as a waterlogging/flooding avoidance response or for 

general competitive advantage. Pezeshki (1992) shows that increases in waterlogging and 

salinity result in significant reductions in stomatal conductance and carbon assimilation 

in P. taeda. Established canopy trees in bio-type 1 may have a less volatile water source 

in having root access to deeper water tables and larger water lenses. As access to 

shallower water tables in bio-type 2 does not confer a competitive advantage (because 

this is easily achieved), trees are competing with shrubs much of the time for the fleeting 

vadose zone precipitation.  
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 The broad inferences of past radial growth here can not be thoroughly verified as 

currently structured, and are intended as secondary to the main purposes of the 

succeeding chapters. Initial results, however, indicate there is significant potential in 

expanded study of this nature. Developmental trajectories in all AINS types are under 

pressure with increasing vertical water table forcing. Researchers will be better able to 

model effects to growth with knowledge of inherent growth probabilities imposed by 

edaphic features.  

 

2.4.4. Climate correlations interpretation 

 ST-2 (small stature/most recently colonized; see Fig. 11 map) significant 

correlations of RWI and temperature are from October previous, and January, February, 

March and May of the concurrent increment (Fig. 16). ST-1a and 1b have fewer 

significant months, and the 1a MC alone correlates with June and August previous 

(though less than 0.30). 

 Employing ST-2 to exemplify the far end of the sensitivity scale (Fig. 15), it is 

noted that these are low elevation, shallow water table sites (Figure 13) perhaps more 

vulnerable to inundation and associated reduced water absorption (Spurr and Barnes 

1980) if drainage/uptake is not rapid. Higher temperatures can act to increase evaporative 

demand and reduce threats from inundation; it is necessary to note that P. taeda will also 

transpire in winter on sunny days (Martin 2000). Perhaps the ubiquity of February current 

temperature as a relatively strong positive correlate (see also ST-3, Fig. 16) is related to 

the fact that average current February precipitation since 1957 (ST-1a inception) is not 

notable at 8.3cm (NWS, Ocean City, MD) with a CV of 45%, but the average 
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temperature of this analytical month has a 2.1ºC standard deviation (with a 3.3ºC average 

and CV of 64%). As days get longer, a warm period could be expected to increase 

evapotranspiration and attendant photosynthesis. Also, the February effect may come 

from a (presumed) negative relationship between average Nor’easter storm activity and 

temperature. Davis et al (1993) found that February had the greatest number (slightly 

more than January and March) of Atlantic coast Nor’easter storms over a 41-year period 

(1943-1984). 

 Positively correlated current precipitation months seen at both SI levels is a 

straightforward growth relationship (June in ST-1b and ST-2; April and August in ST-5 

and August in ST-3). In ST-2, negatively-related precipitation of December previous 

perhaps indicates inundation at this time that does not allow for proper cold-season 

transpiration. Precipitation is a positive factor from July previous: if precipitation is too 

low, heat at this time of year may cause an interruption of growth by increasing wilting. 

This could lead to lower growth as stated earlier, where the number of foliage flushes has 

been found to depend on soil moisture (Hennessey et al. 1992). Benefits of a late summer 

flush may be delayed to the next year’s growth as photosynthate is routed to storage as 

current cambial growth is slowing (Fritts 1976). 

 ST-1a has no significant correlations with precipitation. Of the lower SI site types, 

ST-1a sites are mid-range in BEE and DWT, slightly higher in STI (signifying greater 

water-holding capacity) and are more established (higher maxage), so there is perhaps 

less competition for vadose-zone rain water.  

 ST-4 expresses no significant temperature correlations, though interestingly, it 

peaks in July (previous and current) positively. These are the deepest sites (Fig. 13) and 
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are likely preferentially accessing the water table such that they are less vulnerable to 

drought in summer. The ST-4 positive relationship between growth and August previous 

precipitation is explained by the ST-2 July previous reasoning above. A negative 

relationship with September current precipitation in ST-4 may indicate benefits from lack 

of hurricanes and other coastal storms, though one would expect to see this repeated in 

the more exposed sites. 

 

2.5. Conclusions 

 

 PCA has aided greatly in focusing site and biophysical analyses and has become 

indispensable in crafting predictive theories of structural change, and extrapolating from 

past growth and site relationships to current interactions. The following chapter utilizes 

the data and classifications presented here to focus the search for a key ecohydrological 

mechanism in barrier forest development, and produces a testable theory of changing 

growth with rising water tables. Going forward, it would be optimal to perform a field 

verification of the biophysical structural groups and environmental site types in new 

areas. Also, a human intervention factor to scale maxage may aid in explaining more 

variation among types. 

 The LAI-2000 is successful in capturing seasonal changes and perhaps finer scale 

incremental changes with litterfall. PAI as measured is not reliable for depicting 

underlying environmental gradients (39% variation in average PAI is explained by site 

type). In Chapter 3 the available plant areal change data is utilized, however, to draw 

fairly reliable conclusions across bio-types regarding site moisture relations. With 
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continued study, perhaps in temporally-concentrated field collections of PAI, litter, and 

soil moisture, a material equivalency for leaf area as measured by the LAI-2000 can be 

derived. This would enable fine-scale time-series modeling to predict growth and 

community development with rising water tables that could be verified in a monitoring 

time frame.  

 The derivation of a plot level crown density frequency histogram from crown 

ratios is helpful in differentiating sites by providing the integrative canopy distribution 

metric, HPCD. HPCD could improve on maximum canopy height as an indicator if 

shrubs are included in a final foliated presence frequency. Related work in Chapter 3 

shows that the SCA component, more than the other major biophysical metrics tested, 

correlates to water table depth (rs=-0.80, p=0.009). In fact, HPCD currently outperforms 

MCH in the correlation to DWT. DWT is a major environmental variable of interest as it 

is directly related to sea level (Chapter 3). HPCD is also better modeled by lidar returns 

than MCH (Chapter 4). As PAI interpretability improves, plot level values of HPCD can 

be used to estimate leaf area distribution – which can greatly affect production in sites 

with similar average LAI (Long and Smith 1990). This is important to the monitoring of 

vegetation biophysical and community structure, and associated production and water use 

with increasingly common remote sensing techniques (see Chapter 4). 

 Through analysis of radial growth trends and climate-growth correlations using 

dendrochronological techniques, environmental modulation of growth is described for 

AINS trees. It appears that stability can increase with DWT assuming preferential water 

table access. Typical severe climate pressures aside, trees at shallow groundwater sites 

appear to contend with greater rooting competition. These findings are crucial in 
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predicting the bio-type-specific changes with sea level rise drafted in Chapter 3. Growth 

rate and DWT relationships may be strengthened by more water table sampling and 

perhaps the expansion of monitoring into intra-seasonal radial growth with dendrometers.  

 That the lower site index stands have a greater number of significantly correlating 

climate months at greater rates than the ‘better sites’ is yet more evidence that site is 

affecting growth by modulating inputs. The significant finding here is of greater overall 

dependence of generally more shallow, more recently colonized sites on climate patterns 

(generally temperature as it relates to evapotranspiration and photosynthesis). With 

greater sampling rates over the physical gradients of interest, reliable functional 

relationships of climate and DWT and growth should emerge to aid in the modeling of 

effects of rising water tables to barrier island forests. 

 PIVCR forest regeneration should be monitored, and experimentation should 

commence on rooting zone interactions and related above-ground growth. Work here 

could provide an extraordinary resource to forest ecologists and ecohydrologists 

interested in documenting structural development as depends on barrier island freshwater 

lens dynamics. 
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III. Sea level forcing, and relationships of freshwater availability and barrier island 

forest biophysical structure 

 

Abstract 

 

 Assateague Island National Seashore (AINS) and Parramore Island, Virginia 

Coast Reserve (PIVCR) upland forests are understudied systems. This chapter 

characterizes the ecohydrological system here in a broad manner to address the dearth of 

baseline information, and to assess vulnerabilities of the forests to sea level rise (sea level 

rise is occurring at a relative rate of about 3mm year-1 according to Hayden et al. 1995). 

A simple functional relationship is developed that can be applied to the assessment of 

forest structure change with sea-level forcing of barrier island freshwater tables. 

 As the substrate of the islands is sand down to a commonly found peat layer 

(acting as an aquatard) it is hypothesized that there is a near 1:1 relationship (with the 

peat layer as a confounding variable) between the rising of average sea level and that of 

average island freshwater tables. It is assumed that the upland forests here are water-

limited systems. Based on theoretical work by Hayden et al. (1995), a generalized water 

availability to vegetation communities is estimated by depth to water table measurements. 

This is feasible because of the generally low water holding capacity of sand and low 

capillary strength of water in sand soil. Depth to water table (DWT) is hypothesized to 

negatively correlate with biophysical structural values – of loblolly pine (Pinus taeda L.) 

in particular – because vegetation structure is sensitive to water availability. Detection of 
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a spatial gradient relationship in water and structure can aid in determining likely 

trajectories of rising water on temporal basis.  

 The structure of the P. taeda-dominated forest varies at the coarse and fine scales 

across environmental gradients including DWT at AINS. Capturing leaf area changes 

associated with general water availability will provide a circumstantial reference to 

anticipate and better model production and growth trajectories under changing water 

levels. The relationship of plant area index (PAI), a variable conveniently collected with 

a light sensor instrument that integrates leaf area, is found to only weakly correlate 

(rs=0.46, p=0.133) with DWT. The scaling of DWT with a ratio of soil texture (STI) 

improves the relationship up to rs=0.54, p=0.004. Shrub canopy dripline area (SCA) is 

found to be a reliable indicator of hydrology (correlates with DWT at rs=-0.80, p=0.009), 

and its continued monitoring is recommended at a variety of scales to track structural 

changes due to water table rise. 

 Evapotranspired groundwater (ETG) is estimated to quantify an underlying flux 

that can be helpful in determination of variation in physiological feedbacks in the above-

ground structure/below ground water storage balance, and in derivation of better 

predictions of effects of water table rise. This exercise also contributes evidence from a 

unique habitat to the ecohydrological paradigm of evapotranspiration as a conservative 

process. Dendrochronological analysis of initial-condition development supports a 

rooting depth and DWT interactive constraint theory of forest growth. 

 At AINS, a wind/wave-dominated barrier, the peat layer does hamper attempts at 

tidal forcing descriptions of the freshwater lens systems. There are feasible theories, 

however, based on local geomorphology, of the variation in forcing functions and low 
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cross-correlations of the tide and water table time series. PIVCR appears more readily 

described by standardized functions due to its nature as a mixed-energy-dominated 

barrier. In general, there is evidence that seawater rise is currently a measurable force on 

water tables. 

 Combination of results from these analyses allows for drafting of a chronological 

development theory. It is expected that in most cases on AINS, a permanent water table 

rise could force roots to reside in coarser soil than current, reducing water availability. 

This will be detrimental to growth of forests at the higher elevations if they do not adjust 

rooting habits sufficiently. Lower elevation sites, apparently accessing vadose 

precipitation water preferentially over groundwater, may be most affected by 

encroachment of shrubs or alternately, inundation and salt stress. 

 

3.1. Introduction 

 

 The study is designed to derive a basic understanding of the ecohydrological 

system of the upland forests of barrier islands, and thus propose an underlying 

mechanism that can explain forest development patterns here. Depicting adequately the 

soil-plant-atmosphere circuit is paramount to understanding the likely reaction of above-

ground forest structure and related development to increased freshwater table heights 

expected with sea level rise. Chapter 2, “Mid-Atlantic barrier island forest structural 

properties and site gradient expression” provides the raw data for correlation analyses of 

structure and moisture variables. Perhaps most essential to predictions of forest structural 
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change are a combination of the records of past growth provided by dendrochronological 

analyses, and the records of daily water use by vegetation type in site water level records. 

 The specific goals of this chapter are: 1) develop a simple site water availability 

index that is indicative of structural change along hydrological gradients; 2) compare 

sites along biophysical and environmental gradients in magnitude of groundwater 

evapotranspiration; 3) assess vulnerability of freshwater sources to forcing by sea levels 

through time series analysis of sea tides and site water tables; and 4) synthesize the 

findings into a general predictive theory of likely ecophysiological adjustment, and the 

effects to above-ground structure of rising waters. 

 With these results, small-scale structural changes are illustrated across existing 

hydrological gradients that could feasibly be ascribed to rising sea levels later. The 

opportunity exists to apply these theories to monitoring programs of coastal change with 

rising seas, and Chapter 4 “The application of the EAARL (Experimental Advanced 

Airborne Research Lidar) to measurement and monitoring of barrier island forest 

structure in an ecohydrological change scenario” details how a lidar program could 

provide robust, fine-scale verification of the ecohydrological mechanism proposed in the 

current chapter. It is also apparent, through the analyses here, that there is a potential to 

create highly detailed time series models of site water levels and forest productivity with 

some increased field data sets (E.g., site leaf area change timed with moisture 

availability).  

 In general, this work will also aid in planning for change, and managing natural 

and human coastal landscapes; provide more evidence in the debate over the effects of 

anthropogenic atmospheric change; enhance methodologies to monitor ecohydrological 
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relationships; and promote the coordinated use of standard technologies to arrive at 

verifiable conclusions in issues of global change.  

 

3.2. Background 

 

3.2.1. General barrier island upland forest ecohydrology 

 The significance of understanding the physical structure of forests in the context 

of ecological processes involving material and energy exchange has long been 

recognized. Monsi et al. (1973) note “…morphological features… have a great influence 

upon the processes of action and reaction between plants and their environment through 

the modification and interception of fluxes of radiation, heat, carbon dioxide, etc.” 

Consequently, productivity is determined in substantial part by canopy structure (Monsi 

et al. 1973). It follows that these same morphological properties should play an important 

role in site water relations through interception of precipitation and as an interacting 

surface (leaf area) in transpiration (Gholz et al. 1990).  

 Shugart (2000) notes “structural dynamics can strongly alter the process-based 

predictions of such features as ecosystem productivity” at timescales similar to those of 

concern in the present study. As will be shown later, the effect of canopy flora on 

subcanopy flora and vice versa is evident in groundwater evapotranspiration (ETG) across 

a shrub:canopy tree gradient. Knowledge of a suite of biophysical characters along 

environmental gradients can aid in development of predictive and conceptual models of 

changes in water use with associated structural change. Environmental gradients 
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developed in this study allow for a spatial-for-temporal scale substitution to investigate 

the consequences of sea level rise to island upland forest. 

 Barrier islands are highly dynamic systems, and hence provide a unique 

opportunity for the study of vegetation dynamics and structure, and the controls exerted 

by various environmental factors. Though relatively protected from direct overwash 

impact, the loblolly pine (Pinus taeda L.) forests of AINS and PIVCR can be affected by 

changing availability of freshwater resources and related interactions like those described 

in Hayden et al. (1995). Here, the researchers describe the interplay of three changeable 

surfaces: land, sea and fresh water tables. Vertical changes in one or more of these will 

affect the distance to ground water for vegetation communities and associated general 

water availability as determined by groundwater storage capacity and average matric 

potentials. Ehrenfeld (1990) writes the effects on “species diversity, community structure, 

and ecosystem function are likely to be profound.” Incremental shifts in physiology may 

also be occurring as the saline-fresh water interface rises and vegetation stomatal 

conductivity is reduced by exposure of the rooting zone to greater salinity levels (Johnson 

and Young 1993). 

 The sources of fresh groundwater on the barrier islands are lenses of freshwater 

that float on the denser salt water with a fluctuating zone of mixing between the bodies. 

The size of the freshwater lens “depends primarily on landmass width, permeability, 

recharge and tidal range” (Urish 1980). Adherence of freshwater bodies of the mid-

Atlantic barrier island forests to the Ghyben-Herzberg (Urish 1980) principal of aquifer 

morphology is likely rare. This model predicts a 1:40 relationship between the height of 

the water table above mean sea level and the thickness of the lens. It is expected that 
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Assateague and Parramore freshwater lenses are localized, and their morphologies and 

dynamics dependent to a degree upon: vegetation, through variation in transpirational 

demands (Ruppel et al. 2000); and the presence and thickness of impeding marshland-

derived peat layers (Anderson et al. 2000) at the base of site soil profiles.  

 

3.2.2. Water availability and structure 

 Leaf area index (LAI) is largely assumed to be a determinant and result of the 

forest stand processes of interest in the present study. Hebert and Jack (1998) note its 

applicability as an index of site productivity in P. taeda stands “because it affects 

interception of radiation, assimilation of carbon, carbohydrate storage, transpiration of 

water and accumulation of nutrients.” It follows to reason that changes in LAI may 

significantly affect productivity and water availability (Gholz et al. 1990). Vose and 

Allen (1988) find a linear relationship (r2=0.75, p<0.01) between LAI and stemwood 

production across some coastal plain (North, South Carolina) stands of P. taeda. Phillips 

and Oren (2001) find that seasonal LAI and changes in maximum LAI explain significant 

variation in P. taeda canopy evapotranspiration when combined with vapor pressure 

deficit. In their seminal paper, Grier and Running (1977) find that LAI clearly varies 

across vegetation zones with a precipitation gradient in Oregon. They posit that where 

sufficient leaf water potential can not be maintained through stomatal control and 

available water, leaf area is adjusted to balance evaporative demands. Water stress can 

therefore limit LAI, and reduce – more significantly than any other site factor – tree 

growth in general (Spurr and Barnes 1980).  
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 There is little known, however, concerning the relationship between LAI and site 

water for individual species (Vose et al. 1994). The degree to which the relationship is 

significant in barrier island habitats is unknown, but Day et al. (2001), working in 

herbaceous vegetation on Hog Island of the Virginia Coast Reserve (VCR), determine 

that above-ground biomass may in large part be determined by position of the water 

table.  

 Pines of the Southeastern U.S. undergo multiple foliage flushes during a growing 

season, the number of which is determined by environmental variables – “especially 

moisture” (Spurr and Barnes 1980); P. taeda commonly displays a two-fold difference in 

LAI in a growing season (Vose et al. 1994). This indeterminate growth makes it difficult 

to estimate a temporal pattern in P. taeda LAI (Sampson et al. 2003; see Chapter 2), thus 

requiring very specific site information and regular surveys to make accurate 

characterizations of change and causal relationships. Better modeling of leaf area changes 

with water availability will provide for fine-scale growth predictions. Hebert and Jack 

(1998) were unable to directly relate a moisture gradient and LAI in loblolly plantations, 

but they note the range in precipitation may have been too small for them to observe 

significant LAI change within the experimental design.  

 

3.2.3. Tidal forcing 

 It is clear that sea levels would force barrier lens hydrology and water tables. 

There is heightened concern regarding the effects of sea level rise to vegetation on barrier 

islands because of the possible loss of island stability at an accelerated pace with 

vegetation decline. The current work is not concerned with explicit description of the 
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physical system, only in gauging the sensitivity of areas and detecting a general tidal 

signal in freshwater tables.  

 Dusterhoff (2001), working on the forest upland/marsh wetland transition zone 

(about 70 meters from the shoreline) on the Delmarva Peninsula mainland southwest of 

PIVCR, detected a clear bay tidal signal lagging about 65 minutes. Tidal signals attenuate 

as they traverse sandy barriers (Rotzoll et al. 2008) becoming more difficult to tease out 

of water table time series. Accurate assessments of local sensitivities to sea level 

influence can also be used in the near-term for modeling and predictive efforts on storm 

surge and variation in depths to saline mixing. There are hydrological disparities between 

AINS and PIVCR due to a variety of factors (which are covered below), but they are 

likely most reliant on the alternate geomorphologies of the two island systems: AINS is a 

microtidal wave-dominated strip, and PIVCR a mixed-energy (wave and tide) 

‘drumstick’ (Krantz et al. in review). 

 

3.2.4. Evapotranspiration 

 It seems logical to assume that ETG should vary with leaf area levels, however, 

research has frequently shown a lack of dependence between the two variables. Phillips 

and Oren (2001) find that P. taeda-mixed forest canopy transpiration (per unit ground 

area) “tended to dampen, rather than amplify, variation in evaporative demand or annual 

water availability, and there was no significant temporal increase in [canopy transpiration 

per unit ground area] with a net increase in [leaf area].” Some do find a relationship 

between expressions of water availability and ET (Bond et al. 2007; Ford et al. 2005) to 

an extent. But, more studies in more areas are showing that evapotranspiration is a 
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“conservative process” (Roberts 1983; Roberts 2000) with “water use not exceeding the 

water holding capacity of a deeply rooted soil [barring additional rain]” (Roberts 1983). 

A trend toward methods of drought avoidance (Retzlaff et al. 2001) by rooting growth 

and physiology also appears in examples, as does maintenance of a constant root area to 

leaf area ratio (Hacke et al. 2000, Torreano and Morris 1998) in P. taeda. These 

adjustments are coupled with the interaction of physical structure of all site species in 

which shrubs and other subcanopy flora compensate (Phillips and Oren 2001) for lower 

canopy stomatal density/activity. 

 ETG data is used to place structural expression on a scale of water use, and create 

another explanatory variable in the physiological control of fine structure. ET information 

helps characterize the hydrological Soil Plant Atmosphere Continuum or SPAC (Bond et 

al. 2007) on a site-to-site basis, and aids in assessing likely effects of perturbations to 

water availability and the constituents of the evapotranspiration function used in the 

present study (the White, 1932, method of groundwater use estimation). Studies often 

find quite low variation in ET as detailed above, yet perhaps it can be enough to reflect 

the adjustments by flora (in leaf area, for instance) to counteract the “loss of hydraulic 

contact” (Hacke et al. 2000) in the rhizosphere. The results are an important aspect of 

crafting predictions of effects to canopy and whole forest community structure of rising 

water at AINS and PIVCR. 

 

3.2.5. Synthesis 

 Site water baselines must be determined because of the assumed influence of sea 

level rise on island fresh water table levels (Ehrenfeld 1990). Technically, water 
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availability is the amount of water in a soil between field capacity and permanent wilting 

point of the site vegetation (Lee 1980; Cassel and Nielsen 1986). Freshwater availability 

is estimated at AINS through continuous water level monitoring and soil textural 

description. A standard selection of forest biophysical features and a suite of 

environmental parameters are used in alternating fashion here to cluster sites and draw 

out relationships of structure to water. In addition, dendrochronological analysis bolsters 

theories about site limitations, and predictions concerning water table rise.  

 Vegetation has long been studied for hydrological gradient expression (E.g., 

Waring and Major 1964). The challenge presently – with no prior data sets at AINS – is 

to find that relationship expressed at the scales monitored in this study. Fineness of the 

vegetation data is limited to plant area index (PAI): an index of plant area (the sum of 

one-sided leaf area and stem/branch area) per unit ground area (m2m-2). Biophysical 

structural measures are employed, as opposed to species presence and abundance 

identification typical of phreatic vegetation stratification, in part to coordinate this study 

aspect with the lidar (Light Detection and Ranging) remote sensing project detailed in 

Chapter 4 of this volume. Also, species association analysis may not be the best 

stratification method in certain environments. Roman et al. (1985), in a test of the 

reliability of ‘wetland indicator’ species in the New Jersey pinelands – similar to AINS in 

its low relief and sand soils – find most species intergrade, disrupting cluster analysis and 

other attempts to have hydrological groups fall out. 
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3.3. Methods 

 

 The following methods pertain mainly to research activities performed at AINS. 

PIVCR was studied for water level fluctuation, coarse structure, and evapotranspiration 

estimates only. At the time of study, the forest canopy had recently been largely 

decimated following a series of natural disturbances.  

 

3.3.1. Site and biophysical stratification 

 In the preceding chapter, data collection of the biophysical structure of pine 

forests of the islands and their associated site environments was described in detail. Sites 

are prescribed to groups by the results of principal components analysis (PCA) and 

cluster analysis of biophysical and environmental measures. Structural measures are: tree 

heights and crown lengths; trunk diameters at breast height (dbh); and shrub canopy 

dripline area (SCA). Individual tree crown lengths were integrated over plots to arrive at 

heights of peak canopy density (technically, peak foliated canopy presence frequency), 

HPCD. Plot-level values were computed of basal area (BA): π*(dbh/2)2; and the 

Whittaker et al. (1974) parabolic volume estimate (Vol): (0.5(PTH)π(dbh/2)2 where PTH 

is the plot average tree height. 

 The hand-held “LAI-2000” Plant Canopy Analyzer (Li-Cor Biosciences) that 

derives PAI through calculation of canopy light extinction was used to collect PAI 

estimates at all sites, and characterize in-season foliage changes. The LAI-2000 was 

determined to be the most appropriate means of estimating LAI after a review of the 

literature, though it is noted that it “systematically” underestimates LAI in coniferous 
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forests (Scurlock et al. 2001). The deficiencies arise from pine species violating the 

condition of evenly distributed reflecting surfaces in the Beer-Lambert Law by 

“clumping” their foliage. However, the LAI-2000, in providing instantaneous results of 

PAI (integration of woody and foliar area), may be most appropriate in “estimat[ing] 

seasonal patterns in LAI when LAI varies continuously over the course of the year” 

(Sampson et al., 2003). Destructive harvesting to derive a stand-specific dbh to LAI 

regression (Vose et al., 1994) may result in better accuracy (though possibly not in the 

harsh and heterogeneous barrier island environment) but it is very labor-intensive, and 

the National Park Service (NPS) and VCR prohibit resource destruction. Litterfall 

estimates of LAI are also very labor-intensive and must be measured throughout at least 

one year. The LAI-2000 offers ease of replication for monitoring purposes, and fast and 

precise ground-truthing of the lidar surveys described in Chapter 4 of this volume. Rather 

informal litter traps were installed at the 11 AINS water level-monitoring plots to develop 

a relative leaf loss scale coordinated with PAI measures, and investigate the leaf loss and 

water availability relationship. 

 The environmental variables soil texture, soil organic matter, distance from ocean 

shoreline (distshore), maximum tree age (maxage; approximates the time since 

disturbance), average depth to water table (DWT), and bare earth elevation (BEE) were 

input to a PCA that separated sites into six “site types” after cluster analysis. These types 

are used throughout this study in making site-level interpretations of environmental 

forcing on biophysical responses. Two major PCA-clusters (4 subclusters) were 

developed with the major biophysical parameters. These “bio-types” were used to frame 

the structure-dependant analyses. Clusters were developed by regression of PC1 on PC2, 



 

 

84
and results grouped with the unweighted pair-group method in SAS (SAS Institute, 2002-

2003) statistical software. SAS was used for all statistical procedures. 

 

3.3.2. Water availability and structure 

 Continuous monitoring of sub-hourly to hourly water levels was accomplished 

with Ecotone (Intermountain Environmental Inc.) automatic capacitance water level 

monitoring instruments at the “water plots”: 11 AINS plots and 4 PIVCR sites. As 

initially designed, and as explained above per the Hayden et al. (1995) theory, long-term 

measures would supply a dynamic approximation of ‘water availability’ with simple 

DWT. Soil texture measurements were taken to account for differences in soil water 

holding capacities and matric potentials as variation in these would confound purely 

depth-driven characterizations. Effects of nutrient capacity and leaching variations can 

similarly be accounted for by particle size analysis as shown in a study of sandy Cape 

Cod, MA soils by Seely et al. (1998). AINS Samples were drawn regularly (about every 

10cm) through profiles until water tables were encountered. Soil organic matter (SOM) 

was measured by ignition (see Chapter 2) of samples drawn from the top 10cm of soil 

profiles. 

 Initial data analyses showed that site soils differed mainly in the proportions of 

fine and medium sands. Fraction values were derived for each site and a ratio or soil 

texture index (STI) of fine to medium sand calculated for every sample depth. Profiles of 

texture fineness values were calculated and an average STI figured for each site.  

 The interaction of DWT and STI was tested to see if it characterized relative 

water availability within an ecosystem type better than simple depth to water. An 
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exploratory ANOVA (analysis of variance by general linear model, proc glm, SAS 

Institute 2002-2003) and correlations confirmed that a multiplicative combination of 

DWT and STI (DWST) performs very well compared to both original variables in 

signifying structural change. The simplified model of water availability afforded by a 

majority-sand soil profile, the assumption of an aquatard at depth, and the sensitive water 

tables due to generally high hydraulic conductivity of sand, together preclude more 

intensive water and soil analyses for obtaining relative association of moisture and above-

ground vegetation structure. 

 PAI is tested as a plot-level variable in determining effects of relative water 

availability on above-ground structure. Changes in PAI and more coarse structural 

measures are assessed for correlation to water availability gradients. Holst et al. (2004) 

found that the LAI-2000 instrument reliably detected metered changes in beech (Fagus 

sylvatica L.) stand PAI when silvicultural treatments across sites were replicated. They 

calculated an error of about 15% throughout treatments. PAI was collected at AINS 

throughout 2005 to develop an average spatial gradient in PAI across site types, and 

capture seasonal and moisture-mediated leaf area change. DWT and PAI values were 

lagged by about two weeks in correlation exercises.  

 Tree radial growth rates determined in dendrochronological analyses are utilized 

as developmental evidence in interpreting structure-water interactions. The method (K. 

Hadley, pers. comm.) compares 20-year trends of growth from samples of the two bio-

types. Composite trends were developed from several plots in each bio-type subgroup 

(see Chapter 2), initiated at one or two years after breast height. Aligned with site data, 

guiding principles of site effects on growth were developed. 
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3.3.3. Evapotranspiration 

 The Loheide et al. (2005) modification of White’s (1932) groundwater 

evapotranspiration equation was applied to AINS water level data. The White equation 

(from Loheide et al. 2005) is: 

    ETG = SY (∆s/t + R)     (1) 

where ∆s/t is the change in storage for a day of time t found by linear change in water 

table depth; and R is the recovery rate: the rate of night time (transpiration-free) positive 

change in water table height. SY is the specific yield for each site’s soil computed as the 

average of associated changes in water table height for three precipitation events. Of the 

possible sources of SY described by Loheide et al. (2005), this derivation was deemed 

most appropriate for the data available. See Figure 1 for a chart of a sample water table 

and derived statistics for the period of measure. 
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Figure 1. An example of water table fluctuation data used in the White 
ET equation from AINS plot 29803. The 24 hour change in storage (∆s) 
is 0.01m; the approximate recovery period is 11PM to 3AM; and the two-
day (day of, and day after July 20, 2005) average daily recovery rate (R) 
is 0.13 m. 
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 Consecutive near-transpiration-free (Loheide 2008) times used to compute the 

average recovery rate R, varied from plot to plot. In Figure 1 it is from 11PM to 3AM of 

both the day of and the day after the period of interest (7/20/2005). Depth to the water 

table (cm) is plotted over time. SY for a site will vary with PAI and the associated 

interception rates. Interception is unquantified, but differences in transpiration due to leaf 

boundary layer conditions of wetness should be controlled in our current results as the 

canopies are all comprised mainly of P. taeda. For a representative daily ETG estimate, 

July 20, 2005 was determined to be sufficiently removed from precipitation events, with 

weather typical of a Mid-Atlantic coast hot and humid summer day (Table 1).  

 The strength of association between ETG and biophysical and environmental 

variables was tested to characterize direct and indirect controls of ETG. This would 

enable more robust interpretations of structural differences (spatially and temporally) 

over physical gradients. Differences in ETG that may be due to variable advection by site 

are not investigated. Roberts (2000) details this process as a main cause of variation in 

ET among vegetation types. The extent to which it may cause variation within a small 

landscape such as barrier island uplands is likely insignificant on a rather calm day like 

July 20, 2005. 
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Variable Daily July 20, 
2005

Annual 
Average 2005

Rainfall daily (cm) 0 N/A
Rainfall year (cm) 25 40
Min air temp (C) 23 9
Max air temp (C) 34 18

Avg wind speed (km/hr) 7 11
Max wind speed (km/hr) 24 34

Avg wind direction (degrees) 236 184
Min rel. humidity (%) 58 57
Max rel. humidity (%) 93 91

Min baro. pressure (mb) 1024 1023
Max baro pressure (mb) 1027 1029

Avg fuel moist (%) 14 20
Min fuel moist (%) 11 14
Avg fuel temp (C) 31 16
Max fuel temp (C) 47 26  

 
Table 1. Meteorological measurement values for July 20, 2005 and 
annual average values for 2005 collected at Assateague Island 
National Seashore. 

 

3.3.4. Tidal forcing 

 The Influence of sea levels on freshwater tables was investigated through time 

series analyses of available tides and the site water table records. In a three-tier process of 

simple correlation, ARIMA (autoregressive integrated moving average), and SPECTRA 

(spectral density analysis) iterations, site-specific qualitative estimates of connectivity 

with near-term sea level forcing were developed. A period of relative dryness (<0.5cm 

rain) in winter – February 12, 2006 to March 19, 2006 – was chosen for analysis to 

reduce confounding effects of transpiration on periodicity of the time series, although 

there will likely be some evapotranspiration on warmer, sunny days in winter (Martin 

2000). 

 AINS freshwater lens height fluctuations absent transpiration are a result of 

Sinepuxent Bay (Fig. 2) and oceanside sea levels. The verified Ocean City (OC), MD 

inlet data (NOAA CO-OPS website archive) alone were utilized in lieu of verified ocean 
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tides. The tide slowly fills the bay as there is a single inlet at Ocean City and single outlet 

at Chincoteague, VA. Winds, precipitation, and coastal drainage combine to make tide 

levels and timing irregular and unpredictably modulated at any spot along the island’s 

bayside. PIVCR site water fluctuations are somewhat more readily described by the 

predicted (only unverified data were available for the time period) ocean tide because of 

the generally consistent lag time from ocean levels due to the highly flushed nature of the 

salt marsh, channels and inlets.  

 

 
Figure 2. Assateague and Parramore Islands of the Delmarva 
Peninsula. 
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 A diurnal tide signal is not immediately apparent in the water table series, and it is 

likely that distance and substrate (especially the peat layer) are nonlinear dampeners of 

water table reaction to the changing salt-water levels. Analyses progressed from simple 

correlations between time series of tide and water table in order to identify significant 

lags due to these site conditions in addition to distance from the Ocean City Inlet (Fig. 2). 

The interference and cancellation by the two tidal signals (Rotzoll et al. 2008) at island 

interiors is also hampering detection of a clean signal. 

 Data were averaged at 12 (AINS) and 24 hours (PIVCR) (hourly results were 

poor) and input to simple correlation procedures. Then these average time series were 

assessed with the ARIMA procedure in SAS (SAS Institute, 2002-2003). Ford et al. 

(2005) methodology, in which they determined lag functions of water deficits on 

evapotranspiration, was followed in constructing the ARIMA. The tide is the ‘x’, or 

independent variable and the water table is the ‘y’, or dependent variable. The great 

advancements here from simple correlation include the removal of autocorrelation 

(“prewhitening”) prior to testing for a transfer function from x to y (Pack 1977), and the 

ability to test all possible lag times in the cross-correlation function of the procedure.  

 Reed et al. (2008) provide a model for the application of the SPECTRA (SAS 

Institute, 2002-2003) procedure. They apply findings of cross-spectral density to 

determining cyclic time signatures in estuary levels due to winds and coastal sea level. 

The SPECTRA procedure (SAS Institute, 2002-2003) decomposes raw data series with 

the finite fourier transformation forming a “periodogram” that is then smoothed by 

weighted moving averages. The two periodograms are cross-correlated. The SPECTRA 

procedure was performed on hourly AINS and PIVCR site water level and associated tide 
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data of the dry winter period to determine the most common cycles in spectral coherence 

as data are lagged. This analysis provided site-relative evidence of repeating patterns that 

were linked to a tidal signal. 

 PIVCR tidal forcing analysis was limited to SPECTRA and simple correlation. 

The predicted ocean tide at the VCR could not be made to conform to the stationarity 

principal needed in creating transfer functions (Pack 1977) in ARIMA. 

 The Sinepuxent Bay wind field data were tested for cross-correlation with water 

tables using SAS ARIMA as above because it was hypothesized that bay water retention 

time and volume may create measurable pulses to island water tables. Sustained winds 

from the SSW can impede drainage of the bay and impound water. Alternately, 

perpendicular to the AINS bayshore, sustained wind from the longest fetch (WNW) could 

cause impoundment directly on the shore. Per the Reed et al. (2008) method, all wind 

was converted to a vector of direction and speed, then rotated relative to the long axis of 

Sinepuxent bay (22.5ºE, “v-relative axis”), and perpendicular to this (“u-relative axis”) to 

form two wind force time series. 

 ARIMA functions were processed, unless otherwise noted, as 2nd order 

autoregressive, with a moving average of 1 (where a unit is 12 hours), or 5 (single hours) 

in the wind vector analysis. The tide is differenced by 1 unit (12 hours) to achieve 

stationarity and the wind vector is differenced by 1 hour. Upon initial testing, no ARIMA 

wind analyses yielded meaningful results and they will not be covered further. 
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3.4. Results 

 

3.4.1. Site and biophysical stratification 

 Full results of the AINS environmental and biophysical typing are in Chapter 2. 

Table 2 lists the values by plot for both sets of stratifying categories. Note that the DWT 

is a point-in-time measure. Table 3 lists the environmental cluster results and Table 4 the 

sub-type biophysical groupings. The broad 1 and 2 bio-types of Table 4 were mainly 

applied in the respective biophysical analyses. The outliers of the biophysical PCA are 

distinguished by their relatively large numbers of deciduous woody plants or extensive 

shrub component. See Chapter 2 for island maps of respective clusters. 
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Plot PAI Vol MCH HPCD SCA BA Maxage DWT SOM STI Distshore BEE
19001 1.8 258.5 17.7 12.0 13.1 34.4 65 0.43 0.95 0.09 806 0.57
19002 2.1 230.3 13.9 9.9 179.9 40.0 58 0.18 1.01 0.13 705 0.42
20901 3.3 --- --- --- --- --- 24 0.21 1.08 0.08 679 0.36
21801 1.7 57.6 8.1 3.4 175.0 19.0 21 0.33 1.31 0.06 346 0.34
21901 2.1 241.5 22.8 13.5 5.9 29.7 63 0.71 1.58 0.16 1013 1.34
21902 1.4 191.0 14.1 9.3 40.0 34.1 61 0.21 2.13 0.13 932 0.40
21903 3.2 199.8 16.3 10.8 847.4 29.9 64 0.29 1.18 0.12 1079 0.18
27701 2.7 118.2 11.2 6.0 57.1 28.3 23 0.33 1.25 0.10 329 1.18
27703 2.7 198.9 15.4 10.5 1.8 32.9 40 0.55 0.87 0.10 631 1.03
27704 3.0 406.7 22.9 15.5 149.3 41.9 42 0.32 1.01 0.13 691 0.77
28304 4.7 134.8 17.9 4.5 836.3 20.8 11 0.36 3.59 1.00 1389 0.41
28307 3.0 368.1 24.4 18.0 18.5 35.2 54 0.57 7.62 1.13 1327 0.53
28506 3.3 469.6 29.2 18.8 326.0 38.2 90 0.37 22.09 0.72 1015 0.46
28702 2.7 188.2 14.6 9.0 0.0 31.1 56 0.54 2.82 0.09 421 0.51
28703 2.2 144.9 10.1 7.3 106.2 33.8 29 0.39 4.43 0.10 294 0.92
28704 1.9 92.2 12.4 4.8 62.7 28.2 13 0.22 1.30 0.10 268 0.91
29201 1.9 150.0 10.9 7.2 41.6 33.9 44 0.23 3.70 0.14 390 0.73
29202 2.6 292.6 22.5 10.5 0.0 39.5 67 1.20 2.29 0.17 509 1.36
29203 1.8 181.3 15.5 8.7 0.0 31.6 54 0.45 0.97 0.16 475 0.75
29205 1.1 82.1 11.7 6.3 0.0 20.3 34 0.51 1.50 0.13 383 0.86
29503 3.5 280.0 17.1 13.6 24.2 39.1 51 0.23 4.27 0.54 502 0.27
29504 1.5 89.7 10.7 5.1 67.8 21.8 33 0.41 1.74 0.11 448 0.22
29505 3.0 220.2 16.8 6.8 198.8 34.7 44 0.53 2.72 0.22 598 0.51
29506 1.7 108.3 12.2 6.3 246.1 27.3 26 0.29 1.63 0.12 369 0.52
29801 1.3 69.2 8.6 5.0 206.4 20.2 28 0.25 1.01 0.09 444 0.04
29802 3.1 373.4 22.8 16.5 18.0 39.5 64 0.45 13.22 0.14 548 0.14
29803 1.8 113.5 12.1 5.5 238.6 25.0 29 0.33 0.59 0.08 437 0.15

BIOPHYSICAL ENVIRONMENTAL

 
 
Table 2. The variables and plot values (n=27; plot 20901 was not measured for most biophysical traits) that 
were used to derive principle components (PC) and group sites into biophysical and environmental types by 
cluster analyses of PC scores. PAI is study period (2004-2006) average plant area index in m2m-2; Vol is 
parabolic volume (m3); MCH is the maximum canopy height (m); HPCD is the height (m) of the peak 
canopy density; SCA is cumulative area (m2) of shrub dripline; BA is basal area (m2); Maxage is the 
maximum age of trees in years; DWT is depth to water table (m; point-in-time); SOM is soil organic matter 
(%) from the top 10 cm of soil; STI is the soil texture index (fine sand:medium sand); Distshore is distance 
(m) from the ocean shoreline; BEE is bare earth elevation (m). 
 

1A 1B 2 3 4 5
19001 27701 20901 19002 21901 28307
27704 27703 21801 21902 29202 28506
28702 28703 28704 21903
29201 29205 29504 28304
29203 29506 29503
29505 29801 29802

29803

Plots

Environment Site-Types

 
 
Table 3. Site types derived of environmental variable principal 
components analysis, and the cluster analysis of PC scores by 
individual plots. 
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1A 1B 2A 2B Outliers
19001 27704 21801 27701 21903
19002 28307 28704 28703 28304
21901 29503 29504 29506
29202 29802 29801 29803
21902 28506 29205
29201 20901*
29203
27703
28702
29505

Plots

Biophysical Types

 
 
Table 4. Biophysical sub-types derived by principal 
components analysis of structural variables and cluster 
analysis of PC scores. The Outlier group is excluded from 
most analyses. *This plot is included in 2A based on 
visual estimation only. 

 

3.4.2. Plant area index 

 Of the biophysical variables, PAI is most likely to change at short monitoring 

scales with moisture, thus providing an ecohydrological indicator of SPAC adjustment to 

rising water. Figure 3 shows the integrative nature of the PAI measurement through 

strong Pearson correlations (r) with coarse structure. These are due in part to the fact that 

the LAI-2000 does not distinguish between woody or foliar material, and in part to these 

measures being physiologically interdependent. Basal area did not conform to normal 

distribution after log transformation. Its Spearman correlation rank (rs) with PAI is 0.51, 

p=0.008. 
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Figure 3. Pearson correlations between PAI from 2005 and 
coarse structural metrics collected in all plots, n=26. Data 
were log-transformed to normal distributions. 

 

 PAI changed throughout the study year (2005) in the major bio-types in a few 

common seasonal patterns seen in Figure 4. The proportional changes in PAI from peak 

to lowest foliated points in 2005 are in Table 5. Coefficients of variation of PAI loss are 

35% and 48% for bio-types 1 and 2, respectively. 
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Figure 4. PAI values across 2005 study period for plots in the biophysical bio-types 1 (n=15) and 2 (n=10).  
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Bio-Type n Average % Reduction in PAI Standard Dev.
1 15 41 14
2 10 36 17

2005 Annual PAI Change

 
 
Table 5. The proportional reduction of PAI in 2005 for major bio-types. 

 

 Of utmost interest in predicting growth patterns is change to PAI effected by 

moisture status. P. taeda leaf area is sensitive to drought, and noted for dropping leaves 

relatively quickly under moisture stress (Vose and Allen 1991), and for flushing new 

foliage in good conditions. The leaf litter collections of summer and fall 2005 at the 11 

water plots yield the patterns seen in Figure 5. PAI and leaf litter correlations were 

conducted to determine if there is a regular differential with PAI and litter-driven LAI 

loss. Lagging the total litter weight gain and coincident PAI change by approximately 14 

days, the correlation analyses resulted in opposite directional relationships for bio-types 

(Table 6). The analysis was not constrained with meteorological data like wind and rain 

which could explain some variation.  

 It is likely that it would take multiple consecutive seasons of gathering PAI and 

groundwater information to derive an accurate function of dependence between the two. 

However, as discussed later, this interaction may only be an indirect relationship 

involving plot-wide vegetation transpirational dynamics. 
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Figure 5. The average litterfall (leaves only) through 2005 
monitoring, in kg ha-1day-1 for individual sites (n=10). 
21903 (bio-type outlier) is not represented here as it skews 
the chart by a very large needle drop late in the year. 

 

Bio-type 1 Bio-type 2
Spearman Corr. Coeff. -0.40 0.62

p -value 0.286 0.102
n 9 8

PAI and Litterfall

 
 
Table 6. The correlation results of change in PAI and litterfall in 
the biophysical types. The n values reflect the number of unique 
sets of measures across each bio-type in the study period. 

 

3.4.3. All biophysical structure 

 All structure measures were tested for relationships with the moisture-related site 

factors STI and DWT to develop inferential statistics of ecohydrological mechanisms. As 

stated previously, it may be reasonable to assume that DWT in sand soils will indicate 

general available moisture within a vegetation type, with shallower DWT indicating 

greater availability. In addition, finer sands (higher STI) will hold moisture longer than 

more coarse sands, likely providing an advantage during drought and in low nutrient 

conditions.  
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 The results of the moisture indices and structural parameters correlations are in 

Table 7. Unclustered, and with only 10 samples from instrumented plots, PAI correlates 

somewhat weakly positively with average DWT (rs= 0.46), yet shrub canopy dripline area 

(SCA) and maximum age (maxage) correlate significantly (rs=-0.80 and 0.63, 

respectively). Height of peak canopy density (HPCD) is weakly positively correlated with 

DWT. STI, on the other hand, correlates more significantly with PAI, vol, maximum 

canopy height (MCH), and BA; all plots (n=26) are considered here (Table 7).  

 The sites are clustered into respective bio-types to develop more specific 

relationships of fine plant area change and moisture limitation through DWT. These 

results are in Table 8; note the change in correlative direction from bio-type 1 to bio-type 

2. Note, however, that this does not improve upon the results in Table 7 from unclustered 

sample groups. Together, these results are evidence that deeper plots are generally more 

likely than shallow plots to have higher PAI. 

 

PAI Vol MCH HPCD SCA BA Maxage
Spearman Corr. Coeff. 0.52 0.58 0.68 0.47 -0.06 0.49 0.38

p-value 0.007 0.002 0.0001 0.015 0.764 0.011 0.056

PAI Vol MCH HPCD SCA BA Maxage
Spearman Corr. Coeff. 0.46 0.37 0.43 0.53 -0.80 0.00 0.63

p-value 0.133 0.332 0.244 0.145 0.009 1.000 0.053

Soil Texture Index (STI) and Forest Structure (n=26)

Average Depth to Water Table (DWT) and Forest Structure (n=10)

 
 

Table 7. The correlation results for the site moisture indices STI and DWT with forest structure 
across site and biophysical types. 
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Bio-type 1 Bio-type 2
Spearman Corr. Coeff. 0.46 -0.37

p-value 0.179 0.239
n 10 12

Depth to Water Table and PAI 

 
 
Table 8. The correlation results for DWT and PAI within 
biophysical types at an average two-week lag from time at DWT to 
time at PAI. n refers to sets of average measurements from the bio-
type grouped by time of year.  

 

3.4.4. Shrub analysis 

 Shrub analysis is emphasized because of the apparent potential of SCA as an 

independent site moisture indicator at AINS (Table 7). Conn and Day (1993) document 

Myrica cerifera (bayberry) association with relatively shallow DWT at the VCR, and 

Tolliver et al. (1995) note M. cerifera’s common successional status on the barrier 

islands as intermediate between herbaceous vegetation and trees. SCA is free of high 

intercorrelation with the other coarse structure measures in our study, with a maximum 

Pearson correlation of r=-0.40, p=0.07 (n=26) with HPCD. Figure 6 is a chart of average 

shrub heights and canopy area by site type. 
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Figure 6. Shrub canopy area (♦) and average height (■) of the shrub layer in plots at AINS. All 
sites are grouped into their respective environmental site types, 1a-5. 

 

3.4.5. Soil texture index and water availability 

 In an ANOVA of DWT in the four subgroup bio-type clusters (1a, 1b, 2a, 2b for a 

total of 25 sites), bio-type does not account for significant variation in DWT (r2=0.15, 

p=0.433) while bio-type does impart significant variation (r2=0.46, p=0.007) to average 

STI (with a fair amount of unexplained variation). This new result led to the testing of a 

combination of the measures to utilize the information in STI as needed and develop a 

more dynamic and hydrologically meaningful ordinate: DWST (DWT•STI). The soil 

texture descriptions at regular intervals through the soil profiles (Fig. 7a-7c), allow for 

water availability estimates around the water table, and upward through the profile. In the 

correlation analysis with forest structural measures, average DWST performance 

generally mirrors that of STI (Table 7), except for a more significant and negative 
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association with SCA (rs=-0.32, p=0.12), and a reduced positive relationship with BA 

(rs=0.32, p=0.11).  

 A new DWT variable was modeled using the linear regression function of point-

in-time (PIT) measures of Table 2 and the respective values of verified, long-term 

automatic well-collected averages (n=11). The regression model is: 

                                                    DWT=0.96(PIT)+0.14                                                   (2) 

for which r2=0.69, and root mean square error (RMSE) is 0.19m. Using the modeled 

DWT to derive DWST, and the annual 2005 PAI (as opposed to the study length average 

of 2004-2006, as this may be skewed by long intervals between the main set of measures 

and preceding or succeeding ones, see Figure 4), the PAI-DWST correlation over n=24 

(outliers removed) plots is significantly better (rs=0.49, p= 0.02) than that for DWT only 

(rs=0.22, p=0.29) and improves upon STI only (rs=0.37, p= 0.08). 
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Figure 7a. The STI profiles of plots in bio-type 1 with a linear best-fit trendline (---). STI in percent (fine 
sand/mediums sand X 100%) is on the x-axis and soil depth from surface is on the y-axis. 
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Figure 7b. The STI profiles of plots in bio-type 2 with a linear best-fit trendline (---). STI in percent (fine 
sand/mediums sand X 100%) is on the x-axis and soil depth from surface is on the y-axis. 
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Figure 7c. The STI profiles of plots in bio-type outliers with a linear best-fit trendline (---). STI in percent 
(fine sand/mediums sand X 100%) is on the x-axis and soil depth from surface is on the y-axis. 
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3.4.6. Evapotranspiration 

 Table 9 lists the factors and results for the groundwater evapotranspiration 

analysis. The standard deviation (s) of ETG over all sites (n=10) is 2.63mm day-1, with a 

coefficient of variation (CV) of 56%. There is no correlation between transpired 

groundwater and concurrent PAI measures. However, all PAI readings were generally 

taken above the influence of most shrub canopy. Of all correlations with biophysical 

variables, ETG trends significantly only with SCA (rs=0.67, p=0.03). This and the other 

correlations among the White equation elements and the important biophysical and 

environmental variables are listed in Table 10. Exploratory simulations (not shown) of 

the Shao et al. (1995) barrier island shrub transpiration (MCHOG) model with M. 

cerifera, and a separate permutation with P. taeda, result in a M. cerifera transpiration 

0.9mm day-1 greater than P. taeda, or about 50% higher. 

 In the test of environmental factor significance in ETG trends, BEE (bare earth 

elevation) is the only significant correlation at rs=-0.55, p=0.1 (DWT correlation is 

insignificant but also inverse at rs=-0.42). BEE is a major inversely varying factor in the 

recovery rate, R (rs=-0.71, p=0.02) as a result of general topographic effects, and the 

general condition that R tends to be lower in higher elevations because a source to 

generate recovery needs to have a higher hydraulic head (Loheide 2008). This condition 

is often not met at higher elevation sites, hence a periodic R of 0 (Table 9) results. 

 Loheide et al. (2005) note that fine soil textures will produce greater R, however 

no relation is found between the AINS STI and R data. A significant negative correlation 

of average DWST and R: rs=-0.78, p=0.01 (n=9) does result. SY (specific yield) as 
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mentioned earlier is reduced by greater above-ground biomass through interception, 

hence the significant inverse correlation with PAI (rs=-0.57, p=0.09) 

 

Assateague Site ∆s R period R Sy EtG Shrub Area Herb, vine layer
29803 0.01 11PM-3AM 0.129 0.07 9.94 0.28 grass, TORA
19002 0.02 7:30-9:00PM 0.081 0.07 6.93 0.21 grass, SMRO, fern
21901 0.02 12-2:30AM 0.049 0.10 6.40 0.01 grass, SMRO
21801 0.01 12-2:00AM 0.072 0.07 5.88 0.21 grass, PHAU
20901 0.02 12-2:00AM 0.048 0.08 5.12 missing grass (sparse)
28307 0.02 9PM-1:00AM 0.087 0.05 5.10 0.02 grass, SMRO
21903 0.03 12-4AM 0.054 0.05 4.00 1.00 N/A
28703 0.02 11PM-12:00AM 0.036 0.05 2.75 0.13 grass, SMRO (sparse)
29202 0.02 11PM-2:00AM 0 0.10 2.03 0 grass (sparse), SMRO
29205 0.03 7AM-9AM 0 0.07 1.75 0 grass
27703 0.03 0 0.05 1.27 0.002 grass

Average 0.02 0.051 0.07 4.65
Standard Dev. 0.01 0.041 0.02 2.63

CV 0.27 0.811 0.27 0.56

Parramore Site ∆s R period R Sy EtG Shrub Area Herb, vine layer
91 0.01 N/A 0 0.56 6.78 mature MAVI, MYCE SMRO

6580 0.01 N/A 0 0.32 4.05 BAHA, PITA regen. grass
12 0.02 N/A 0 0.11 2.05 MYCE (sparse) grass, SMRO regen

6540 0.01 variable 0.001 0.10 1.42 BAHA, PITA regen. grass

Average 0.01 N/A 0.27 3.58
Standard Dev. 0.00 N/A 0.22 2.41

CV 0.23 N/A 0.80 0.67  
 
Table 9. The White groundwater evapotranspiration equation values for July 20, 2005. ∆s is the daily 
change in water storage of the site soil (m in depth); R period is time span of freshwater influx to water 
table after active transpiration ends; R is recovery rate (m recovery period-1); SY is specific yield of site soil 
(dimensionless); ETG is daily evapotranspiration of groundwater (mm day-1); Shrub area is a relative value 
of shrub species' canopy area in plots. For Parramore plots, shrub canopy was not measured, and listed are 
shrub and tree species presence in the understory; Herb and vine layer are characterized by species 
presence only; grasses were not identified, BAHA is Bacchus halmifolia, MAVI is Magnolia virginiana, 
MYCE is Myrica cerifera, PHAU is Phragmites australis, PITA is Pinus taeda, SMRO is Smilax 
rotundifolia, TORA is Toxicodendron radicans. Sites are listed in descending order of total daily 
evapotranspiration. 
 

 Plot 29803 (Table 9) has a significantly higher EtG than the next highest reading. 

Its water table is significantly more stationary than the others (Fig. 9a) which may 

indicate a reliable recharge source at a higher head as mentioned above. Its fairly high 

total SCA is also a factor. 
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SY EtG R
PAI -0.57 -0.27 -0.06 rs

0.085 0.446 0.879 p-value
SCA -0.32 0.67 0.72 rs

0.369 0.035 0.018 p-value
BEE 0.31 -0.55 -0.71 rs

0.381 0.098 0.020 p-value
DWST* 0.37 -0.57 -0.78 rs

0.321 0.112 0.013 p-value

Evapotranspiration, Biophysical, and 
Environmental Variables

 
 
Table 10. The Spearman correlation results of White 
groundwater evapotranspiration constituents and a 
selection of site environmental and biophysical 
variables. SY is specific yield of site soil; ETG is daily 
evapotranspiration of groundwater; R is recovery rate 
of ground water table; PAI is plant area index; SCA is a 
relative value of shrub species' canopy area in plots; 
BEE is average plot bare earth elevation; and DWST is 
the water availability index DWT•STI (depth to water 
table X soil texture index). n=10. * n=9. 

 

3.4.7. Developmental forces 

 Dendrochronological samples of both bio-types decline at similar rates in their 

respective clusters (Fig. 8), but bio-type 2 declines about 27% faster than bio-type 1 (see 

Chapter 2). An ANOVA of all of the slopes of radial growth decline results in significant 

difference (p=0.006) between the groups at r2=0.63. Obviously, developmental pressures 

– competition for water, for instance – are greater in the years depicted (20 years post-

breast height for each sample) for bio-type 2.  
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Figure 8. Results of a dendrochronological analysis of radial growth rates performed on two bio-type 
subgroups at AINS of similar age and comparable canopy crown class positions. Average raw percentage 
declines are 42% for bio-type 1a and 69% for bio-type 2b. 
 

3.4.8. Tidal forcing 

 Figures 9a-9b depict the 12-hour water table and tidal levels for AINS, and 24-

hour levels for PIVCR, respectively, used in the simple correlation and prewhitened, 

lagged crosscorrelation. These were the most successful configurations after testing 

hourly, 6, 12 and 24-hour iterations at both islands. Results of the exploratory simple, 

hourly correlations are charted in Figure 10. PIVCR time series correlate at a greater 

magnitude than AINS series. Both sets are inversely (less plot 29803 of AINS) 

correlated, yet the discrepancy in magnitude between sets necessitates more refinement of 

the possible difference in lag from sea to water table. 

 In the assessment of SPECTRA procedure results (Figures 11a-11b), it is apparent 

that the two tide data series (hourly data here) are limiting the shapes of the cross spectral 

density courses. The AINS OC inlet tidal level is subject to several non-linear inputs, 
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hence the lack of dramatic peaks and the presence of slowly decaying spectral density on 

either side of the visible peaks. The 13 and 27-hour signals are common, as is the steady 

climb of relative cross-spectral density to the strong peak at hour 86.4 (approx. 3.5 days). 

Figure 12 charts the OC Inlet tide over the study period, and an approximate 3-day rise 

and fall pattern can be detected. Note the presence of diurnal inequality during this time 

of alternating amplitude or “mixed” tides (NOAA CO-OPS Tides and Currents website). 

Plot 29803 has the only positive simple correlation (insignificant) (Fig. 10), and an 

especially muted spectral density plot (Fig. 11a) in the SPECTRA analysis. 

 The predicted, unverified Wachapreague, VA tide at PIVCR is artificially 

regularly-variant, producing strong 13 and 27-hour spectral cycles at the three northern 

sites. The highly variable pattern (Fig. 9b) of the water table at PIVCR 91 (an isolated 

upland island surrounded by marsh) leads to a focusing of the spectral densities around 

13 and 27 (Fig. 11b).  
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Figure 9a. 12-hour average tide (♦) and fresh water table levels () at AINS plots in the winter dry period 
of February 12, 2006 to March 19, 2006. Time (x-axis) is in 12-hour increments. 
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Figure 9b. 24-hour average tide (♦) and fresh water table levels () at PIVCR plots in the dry winter period 
of February 12, 2006 to March 19, 2006. Time (x-axis) is in 24-hour increments. 
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Figure 10. The Spearman correlation ranks (rs) of the tide and 
water tables for AINS (■) and PIVCR (■) in the winter dry 
period of February 12, 2006 to March 19, 2006. 
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Figure 11a. The SPECTRA procedure results for AINS plots in the dry winter period. The y-axis is log-
adjusted and denotes the estimates of the smoothed cross-spectral density of tide and fresh water table 
levels at hourly time steps. Time (x-axis) is in 1-hour increments. 
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Figure 11b. The SPECTRA procedure results for PIVCR plots in the dry winter period. The y-axis is 
log-adjusted and denotes the estimates of the smoothed cross-spectral density of tide and fresh water 
table levels at hourly time steps. Time (x-axis) is in 1-hour increments. 
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Figure 12. Hourly OC Inlet tide for the winter dry period. The approximate 
3-day half-cycle repeating pattern is illustrated. 
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 ARIMA processing allows for making informed estimates of the lag from 

saltwater tide to freshwater table fluctuation. These are the most interesting of the tidal 

forcing results in that they are unique to each site, and can provide the best prospect to 

derive meaningful sea level action on uplands from a limited data set. Figure 13 is the 

chart of the most significant lag cross-correlations at AINS. There is likely error 

introduced by applying a differencing of 12 hours to the tide in the stationarity 

adjustment of ARIMA, as the real tidal regime is about 12.42 hours. The time separation 

will unavoidably grow. SAS software (SAS Institute 2002-2003) allows only whole 

numbers for the differencing correction. 

 It is logical to choose as explanatory the lag of the greatest direct (positive) 

correlation (i.e., shift tide series ahead n lags for direct effect on water table). However, 

geomorphic and tidal interaction conditions may combine to require a negative lag (of 

OC inlet tide) because of the difference in ocean-side and bayside level times. 

Downshore bay levels normally lag behind ocean levels up to several hours – and more if 

winds are from the south or west. The ARIMA results from each site (Fig. 13) are 

interpreted individually in Figures 14a-f with maps and site knowledge as support. “Dual 

propagation” in Figures 14a-f text refers to the influence of ‘asynchronous’ tidal 

propagation from opposite sides of the island (Rotzoll et al. 2008). 
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Figure 13. The best cross-correlation values (y-axis) between “prewhitened” tide and fresh water table 
levels at various lags (x-axis, 12-hour units) for 7 AINS plots. 
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Figures 14a - 14f; all plots denoted by ♦ and plot number. 

 

 
Figure 14a. Map excerpt of AINS plot 20901. 0 (12hr) lag. r=0.31; grades out to -2 and 1 lags. There may 
be a sub-12 hour response to bay tide with the proximity to a bay gut, a shallow soil, and perhaps less 
winter transpiration than occurs at other sites because of several hardwood dominants in dormancy. 
 

 
Figure 14b. Map excerpt of AINS plot 21903 (left). -1 (12hr) lag. A negative lag may imply a greater 
influence by ocean side tide signal that propagates prior (up to 3-4 hours) to the inlet tide reaching the 
island bay side. The transverse gut here may be forced by ocean propagation as this is a geomorphic weak 
point. Alternately, there could be dual propagation causing feedback. Plot 21801 (right): 2 12hr lag. Dual 
propagation negating a dominant signal appears likely here, and this is supported by the wide lag window 
in figure 13. Alternately, it may be a 12-24 hour bayside propagation, though this seems unlikely. 
 

 
Figure 14c. Map excerpt of AINS plot 28307. -2 (12hr) lag. A longer negative lag; at these low correlation 
levels this could indicate spurious effects (r=0.20). The ‘Green Run’ area here is geomorphically distinct 
from the main ocean side spit formation. It is plausible that a main ocean signal would take up to 24 hours 
to propagate through the areally extensive marsh peat. The diurnal inequality of the tide at this time of year 
can be producing a consistent 24 hour ‘average’ level upon attenuation. 
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Figure 14d. Map excerpt of AINS plot 28703. -2 (12hr) lag. As in 28307, it appears that the diurnal 
inequality and geomorphic attenuation may lead to a 24 hour stabilization. 
 

 
Figure 14e. Map excerpt of AINS plot 29205. 0 (12hr) lag. With its central position, and its proximity to 
open drainage to marsh, the decline is flat in this sparsely wooded plot. The small range may lead to 
insignificant correlation results, or the freshwater lens is forced by the ocean at a sub-12hr phase. 
 

 
Figure 14f. Map excerpt of AINS plot 29803. 2 (12hr) lag. Within 24 hours of the tide level reading at the 
OC inlet, the plot water table corresponds at an r of 0.45 – the highest of all plots tested. There are some 
washover fan formations relatively close to the eastern side, and to the north of the gut termination. This 
may indicate a preferential pulse flow path from the ocean side, or the configuration of the terminating gut 
forces a defined amplitude pulse. 
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3.5. Discussion 

 

3.5.1. Plant area index 

 Roberts (2000) notes that reduction in leaf growth – not stomatal closure – in 

species of indeterminate-growth (like P. taeda) is the “first indication of development of 

water stress.” As seen in other studies, P. taeda leaf area change through the annual 

course is substantial (Fig. 4; Table 5). Hennessey et al. (1992) find that P. taeda needle 

fall is greatly reduced following a dry year – because production is reduced in the dry 

year – and that current-year climate (precipitation and temperature) shifts timing of peak 

monthly needle falls with drought reducing leaf duration. 

 That PAI may increase with litterfall in the lower biomass bio-type 2 (Table 6), 

while possibly decreasing in bio-type 1 could indicate the leaf area change and climate 

relationship varies among developmental classes and differing moisture regimes (see 

dendrochronology-climate analyses, Chapter 2). Also, the opposite (though not 

significant) directional correlation found for PAI and DWT between the bio-types (Table 

8: bio-type 1: rs=0.46, p=0.179; bio-type 2: rs=-0.37, p=0.239) may indicate alternate 

water strategies in different sites by P. taeda. In fact, growth trajectories differ markedly 

(Fig. 8) between the bio-types due, apparently, to site elevation and depth to water 

source. P. taeda adapts its root energetics to the water source timing and configuration 

(Retzlaff et al. 2001; Torreano and Morris 1998) that are products of soil texture and 

depth. 
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3.5.2. Developmental forces 

 Early radial growth rate is significantly different between the major biophysical 

types of AINS as seen in the direct comparison example of Figure 8. It is likely that the 

trajectories within type (bio-type 2 trends, CV=33%, are more homogeneous than those 

of bio-type 1, CV=42%) result from shared patterns of root growth as constrained by site, 

and flora competition. Torreano and Morris (1998) found intra-season change in P. taeda 

seedling root growth to be a result of changes in soil water and transpirational demand, 

and found that seedlings exhibited significant reductions in root development and 

proportional decreases in above-ground biomass with short-term reductions in water 

potentials. Flatter rates of decline seen in bio-type 1 compared to bio-type 2 indicate a 

more stable development (Johnson and Young 1992) as would result from root-tapping of 

average tables at a plentiful source (see Chapter 2).  

 Hacke et al. (2000) find that P. taeda root area to leaf area ratios are significantly 

different from loam to sand sites, with the ratio increasing with increasing soil porosity 

(lower overall matric potential). Torreano and Morris (1998) determine that this ratio 

remains fairly constant among differentially water-treated seedlings. This inherent 

characteristic can be very important in continued studies on the barrier islands such as 

remote sensing monitoring (see Chapter 4), and related modeling of structural 

relationships to moisture indices. 

 Generally, bio-type 1 sites are greater than bio-type 2 sites in all the standard 

biophysical metrics except SCA (Table 11). Note they are also at greater average 

elevation: 1.01m (s=0.54, n=15) to 0.78m (s=0.24, n=9) for bio-type 2. In sand soils at 

time of colonization, individuals that can access the water table capillary fringe (Zahner 
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1968) are at a clear advantage. Successful bio-type 1 individuals gained access to 

groundwater quickly. Bio-type 2 individuals were stocked more densely and, at generally 

lower elevation, had easier water table access. The better adapted individuals here 

preferentially accessed precipitation water in the unsaturated zone. 

 Water lenses of lower elevation sites are necessarily thinner and more ephemeral 

as trees will draw down tables quickly. There can thus also be a disadvantage to having 

permanent roots much deeper in bio-type 2 stands where they may be in a more saline 

zone. 

Mean St. dev. Mean St. dev. Mean St. dev.
PAI 2.54 0.63 1.77 0.48 3.95 1.05

MCH 18.70 5.06 10.79 1.57 17.06 1.15
BA 35.72 3.72 24.86 4.94 25.36 6.39
Vol 270.01 94.39 97.29 26.85 167.28 45.93

SCA 67.81 98.65 128.88 89.65 841.82 7.86

Bio-type 1 (n=15) Bio-type 2 (n=9) Ouliers (n=2)

 
 

Table 11. Summary statistics of biophysical properties of the AINS bio-
types. PAI is Plant Area Index (m2m-2); MCH is maximum canopy height 
(m); BA is Basal Area (m2 ha-1); Vol is parabolic volume in m3 ha-1; SCA is 
shrub canopy dripline area in m2. 

 

3.5.3. New water availability index 

 The need for a more appropriate water availability estimate evolved from the 

initial low PAI-DWT correlation of 0.46 (Table 7). Having collected STI among other 

environmental site variables to account for confounding and interacting factors in the 

original depth-driven model, it is shown to be a better overall direct predictor of 

biophysical characteristics (Table 7).  

 It is commonly acknowledged that “water availability” is a result of a dynamic 

interaction between rooting pattern and the concurrent soil matrix (Cassel and Nielsen 

1986). STI, as a proxy of standard soil particle size distribution and associated matric 
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potential is important to water retention and movement (Brady and Weil 2008) at any one 

depth in the soil column. It can be used in tandem with DWT over time to characterize 

water availability to the P. taeda forests at AINS. When average modeled DWT is 

multiplied by mean site STI – forming the DWST variable – there is an improvement 

over either variable separately in correlations with average 2005 PAI (rs=0.49, p= 0.02). 

This correlation improves further when the PIT (single daily depth to water table) depth 

measures are used (rs=0.54, p=0.004). The PIT measures, though made in late 2006, may 

better reflect variation across all sites. 

 Improved correlations with PAI may indicate that DWST acts on a more 

meaningful time scale here than does DWT – a result consistent with our intent of 

deriving a more dynamic estimate of water availability (hourly at the water table if 

needed). Figure 15 is a conceptual model of the soil water system dependent on DWT 

and its intersection in the soil profile along an STI gradient (recall figures 7a-7c of 

individual plot STI profiles). The implications of the model are discussed within a sea 

level rise scenario below. Texture sample replicates should be assessed for average 

nutrient (N, P, K) concentrations in future work to control for these effects on biophysical 

variables. 
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Figure 15. Diagram of current water availability scale in an 
idealized Assateague Island soil column. Arrows indicate 
direction of increase, and the upper and lower bounds of an 
average water table over time are represented by the dashed 
(---) horizontal lines. In the top right half, STI increases 
downward through the profile, and water table rise will 
result in lower water availability. In the bottom left half, STI 
increases upward through the profile so that water table rise 
will lead to greater water availability. 

 

3.5.4. Shrub analysis 

 Figure 6 represents shrub structure for individual plots. It is noteworthy that SCA 

correlates strongly negatively with DWT (rs=-0.80, p=0.01) as it is a further indication of 

developmental and successional control, and structural determination (as well as PAI 

variation as seen above) by DWT. SCA is also an important variable for continued 

monitoring that will yield greater insight into the relationship of structural heterogeneity 

and ETG. 

 M. cerifera appears to transpire at higher rates than P. taeda. It is possible that M. 

cerifera is making some shallow sites amenable to P. taeda by drying otherwise flooded 

sands. This would work in tandem at longer times scales with elevation addition by island 

migration (rollover), making succession to forest more likely at accreting spots (Johnson 
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and Young 1992). It has been shown that a site’s maxage correlates rather strongly 

positively with DWT (rs=0.63, p=0.05; Table 7). Through glasshouse experiments, 

Tolliver et al. (1997) also show that P. taeda is probably more sensitive than M. cerifera 

to flooding duration and frequency. 

 

3.5.5. Evapotranspiration 

 It was hypothesized that transpired groundwater (ETG) would vary with structural 

differences at AINS, and that a relationship would emerge between PAI and EtG because 

of the reactivity of P. taeda foliage, and the generally lowered stress-buffering ability of 

coarse, quickly-drained soil. Specifically, it was anticipated that ETG was predicted by 

PAI to an extent that would help explain water table and foliage relationships, and hence, 

provide a physiological mechanism in adjustments of structure to altered water 

availability (and possibly increased inundation). Modeling of P. taeda transpiration with 

the adapted Shao et al. (1995) model (not shown) predicts a small but measurable 

increase in transpiration with a 50% increase in LAI value. Some have found no 

relationship or a non-linear one at best between canopy leaf area and ETG (Roberts 2000). 

Our final result is of no relationship between PAI and ETG (Table 10). 

 As for coarse structure, Calder (1998) found basal area to correlate significantly 

with transpiration, while BA at AINS is unrelated (rs=-0.06) to ETG. SCA on the other 

hand, is a consistent positive factor in ETG (rs=0.67, p=0.03 overall; see Tables 9, 10). 

This result is consistent with Philips and Oren (2001) in that a “main cause of conserved 

forest Ec [canopy ET per unit ground area] is subcanopy compensations for water losses 

occurring from forest canopies of varying [leaf area].” It is apparent in smaller stature 
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stands, that M. cerifera or other shrubs when present, act to increase ET totals to a 

relatively low total variation (CV at AINS of 37% among plots with shrubs) over the 

study area (table 9). The CV of ETG in PIVCR plots is 67%, due to the regenerating 

condition of most of these sites and increased exposure of subcanopies to light and 

atmospheric demands due to dominant canopy decline. 

 In site-level evaluation terms, AINS plot 29803 is biophysically unremarkable 

being near the bottom of canopy volume, and with a slightly above-average shrub areal 

coverage of 28%, yet its ETG rate is well above the next greatest (Table 9). All of the 

shrubs here are M. cerifera, while the plot with the highest shrub area, 21903, has a mid-

range ETG. The vast majority of the subcanopy here is Vaccinium corymbosum L 

(highbush blueberry) a broad-leaf deciduous shrub with transpiration quite sensitive to 

water stress (Mingeau et al. 2001). M. cerifera has a maximum simulated rate of about 8 

mm day-1 at the barrier islands (Shao et al. 1995), but it is also fairly sensitive to drought. 

The overstory at plot 21903 is more developed and may partly explain the discrepancy 

with the sparsely canopied plot 29803 (compensation effects noted earlier). It also seems 

likely that M. cerifera is more salt-tolerant than V. corymbosum, thus possibly 

contributing to the site-level ETG difference. 

 Site effects to ETG rates are evident in the recovery rate (R) (Table 9) which lends 

a large portion of variation to the White equation (equation 1) results (Table 10). Perhaps 

proximity to marshes, in combination with shrub presence leads to the higher calculated 

groundwater use because of nighttime inflow (Loheide et al. 2005) if marshes are under 

greater hydraulic head. Figures 14e-f illustrate that, though similarly near marsh, 29205 

does not recover like 29803 perhaps due to its deeper soil. It is instructive that BEE and 
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ETG correlate somewhat strongly negatively (rs=-0.55, p= 0.1) (Table 10). This is, as was 

shown earlier, probably related to shrub compensation with their increased presence at 

lower elevation sites. It also reflects the fact that deeper sands commonly do not have 

notable recovery influx because of a lack of recharge from sources of higher hydraulic 

head in the vicinity. 

 Site moisture limitations as may be imposed on transpiration by more coarse soil, 

can not be determined from one day’s measure of ETG. Hacke et al (2000) examined 

loam versus sand soils, and extending their finding to gradations in sand, one would 

expect the coarser soils to limit overall water uptake as hydraulic conductivity declines 

faster than in finer sands (Brady and Weil 2008). In fact there is no relationship (rs=-0.12, 

p= 0.7) between ETG and soil texture index (STI) at AINS. There results a significant 

negative relationship (rs=-0.57, p=0.1) between ETG and the average water availability in 

DWST, but this is probably a result of the overriding effect of decreasing R with greater 

elevation (Table 9) as discussed above. An exploratory correlation (not shown) using the 

daily July 20, 2005 DWST (by finding the STI at the average daily DWT through 

regression of the profile information, figures 7a-c) was inconclusive. Roberts (2000) 

expects reductions in highly transpiring (>9mm/day) systems with water deficits, and 

little change in lesser transpiring types; and Ford et al. (2005) state “usually only under 

very low soil moisture availability does ET show a strong relationship with soil 

moisture”. Standard water availability measurements – though not foolproof (Cassel and 

Nielsen 1986) – may be required to better develop these relationships for AINS. 

 The result of an inverse correlation between ETG and BEE supports the 

developmental paradigm of water use detailed earlier, that: vegetation of shallow soil 
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sites (generally lower DWST) compete for the more fleeting vadose precipitation sources 

here, and thus operate at higher ET per ground area; and the vegetation with well 

developed root systems at deeper sites preferentially access the stable average 

groundwater tables, transpiring at a more metered pace. There are also the feedbacks 

mentioned earlier of canopy and community structure-specific microclimate conditions 

maintaining the ETG differential along the elevation gradient. 

 

3.5.6. Tidal forcing 

 Results from tidal and water table time series analyses have affirmed a general 

presence of tidal forcing in the water table data. A qualitative view of sensitivity to sea 

level rise by site is developed by comparing final crosscorrelation strengths of 

prewhitened tide and water table series. There is much nuance to discussion of the results 

(see accompanying text to Figures 14a-f) for the AINS ARIMA lag allocations (Fig. 13). 

Note that PIVCR cannot be effectively managed by the ARIMA process because the tide 

is not verified. PIVCR simple correlation results were stronger than AINS, perhaps 

indicating a greater sensitivity, but they could be inflated because autocorrelation is still 

present in each time series (Ford et al. 2005). 

 The SPECTRA results offer a general confirmation, in all sites at AINS and 

PIVCR, of pulse cycles that are tide-related. The peaks of cross-spectral density are at 

about 13 and 27 hours (Figures 11a-b), approximating the diurnal tide cycle (12.42 hour 

period). AINS plots also share the large spectral density peak at about 3.5 days or 86 hrs 

that appears to be a result of the alternating phase of rise and fall of the OC inlet tide 

depicted in Figure 12. 
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 The longer diffusion of cross-spectral density at AINS compared to PIVCR is 

likely a result of the already attenuated nature of the OC inlet signal through the bay. 

PIVCR water tables are more conducive to change detection because tides are more 

synchronized from one side of the island to another as a result of the ‘mixed energy’ 

nature of the barrier system here with a greater overall tidal range. It seems that the 

Sinepuxent Bay water levels at AINS are a non-linear combination of effects of: distance 

from inlet; drainage processes from riverine inputs; drainage from the single outlet to 

open water at Chincoteague (up to 30km to the south); unpredictable effects of winds; 

interference of both ocean and bay tide signals at island interiors; protracted hydraulic 

forcing (saturation and saturated hydraulics of peat layer) and drainage of heterogeneous 

layers (sand, peat); varying rates of rise and fall in homogeneous sand (Nielsen 1990); 

and the averaging of the mixed tide (alternating amplitude) nature of the tide which 

introduces a drift in the average and could affect the allocation of lag initially. 

 Perhaps the most significant local determinant of forcing by rising and lowering 

of the salt-fresh interface is the non-linear hydraulic dampening by the intact peat layer 

traversing significant portions of sites and the island as a whole. The peat layer is treated 

as a constant throughout the study area. A layer was encountered at many sites during soil 

sampling and ecotone well installations. At its least dense, the layer will have hydraulic 

conductivity similar to very fine sand (Knott et al. 1987). Density will increase – creating 

an aquatard situation – with compaction by topping sand layers. It is recommended that 

future work on sea level forcing characterize the layer thoroughly.  

 

 



 

 

126
3.6. Conclusions 

 

3.6.1. General conclusions 

 It is important to monitor structure and moisture status to develop predictive 

relationships that provide insight into ecohydrological functioning of these rare forested 

habitats of Mid Atlantic barrier islands. Short-term sea levels force island water table 

levels and, hence, water availability. A relatively precise inferential relationship between 

forest biophysical structure and water availability estimates is determined. This will be 

useful to managers of natural P. taeda forests of barrier islands and other landscapes 

where water sources are subject to alteration.  

 

3.6.2. System description and factor synthesis 

 Forests of the barrier islands are structured by constraints associated with site 

elevation, BEE. Forest bio-type 1 (see Table 11), is at an average yearly DWT of 0.76m 

(n=4) and bio-type 2 at 0.39m (n=4). As a result of island migration processes 

(‘rollover’), BEE will also determine soil texture profiles to an extent. STI is a significant 

source of variation in bio-typing (r2=0.46, p=0.01), with values largely trending up with 

depth from ground surface. Dendrochronological analysis shows that tree radial growth 

trajectories are significantly different between bio-types, with bio-type 1 declining at a 

much slower rate than bio-type 2. 

 PAI, an easily measured fine-scale structural metric, can be used to quantify in-

season foliar changes at AINS resulting from a combination of factors including soil 

moisture. PAI correlates significantly (up to rs=0.54, p=0.004) with a hybrid of DWT and 
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STI: DWST, a flexible, easily measured site moisture availability estimate. This has 

improved upon the individual relationships of PAI with either soil metric (STI only 

slightly) mainly because DWT needs to be scaled by a meaningful representation of the 

soil’s matric potential to better reflect general probability of available water.  

 These are site-level measures that reflect the moisture capacity of the entire 

vadose zone; and are related to the annual average PAI. For fine-scale growth impacts (as 

may be ascertained with changing foliage levels) due to changing water levels with sea 

level rise, the unexplained variation in the PAI and DWST relationship needs to be 

addressed. 

 The PAI-DWST function can be further developed to a fine scale time series that 

would allow very precise modeling of leaf area change and associated productivity with 

water tables. A predictive transfer function would require additional PAI measures and 

calibration of the DWST with soil moisture analyses. PAI monitoring with remote 

sensing tools like lidar can be used now (see Chapter 4) to determine fine-scale changes 

occurring in natural vegetation associated with rising water tables. Multi-year study 

appears necessary to capture the effects of previous-year moisture levels on current-year 

foliage (see Hennessey et al. 1992), and explain the variation due to indeterminate 

growth of P taeda. Continued dendrochronological analysis can relate foliage levels to 

stemwood production. 

 Change in tree canopy PAI over multiple years may signify adjustment to 

community succession related to DWT. Changes in the proportion of canopy tree 

biomass and subcanopy (shrubs, especially) biomass over time may be the first 

significant indicators of ecohydrological change with sea level rise. Shrubs are indicative 
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of site types at AINS, and their density can signify the successional status of the 

community. Shrub density (or SCA) determines total groundwater evapotranspiration to a 

greater extent than any other biophysical metric, and remains independent of these other 

structural metrics (except HPCD). Evapotranspired groundwater, determined with water 

table and other site data, is very much a property of community structure and tends to 

increase where M. cerifera is present. With this knowledge, another constraint can be 

applied to the feedback loop of the SPAC, and physiological adjustment can be indirectly 

detected with structural change. Chapter 4 details how a remote sensing system can 

populate simple regression models and, potentially, run productivity models with 

structure data to monitor and analyze these feedbacks. 

 

3.6.3. Predictions of effects to bio-types 

 Our simple model of water availability on barrier islands illustrated in Figure 15, 

and the supporting relationships, together guide some fundamental predictions of effects 

to above-ground structure. The degree to which these are observed may be very 

dependent on P. taeda’s ability to adjust water uptake strategies on applicable time 

scales. In general, tree leaf area is expected to decrease on a ground area basis with rising 

water tables, and: 

In bio-type 1, P. taeda seedling establishment could be temporarily 

enhanced by higher water tables, yet overall water availability in drought 

could decrease with rooting residency in lower STI strata. Seedling 

maturation may lead to lower overall site growth rates. This bio-type may 

also experience increased invasion from woody shrubs at some of the 
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more shallow sites and increased competition for water, thus reducing 

canopy tree growth rates. 

In bio-type 2, if the rooting zone in lower areas of the islands are 

progressively submerged this could reduce water absorption (Spurr and 

Barnes 1980) and limit growth through reduced gas exchange (Johnson 

and Young 1993). It is unclear if direct salinization of rooting zone water 

will be an issue in the forest stands – this will depend on local lens depth 

to saline mixing. Johnson and Young (1994) observed reduced stomatal 

conductance in coastal loblolly with temporary salt inundation but found 

the trees recovered quickly. In general, M. cerifera will out-compete P. 

taeda for water in the shrinking vadose zone. 
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IV. The application of the EAARL (Experimental Advanced Airborne Research 

Lidar) to measurement and monitoring of barrier island forest structure in an 

ecohydrological change scenario 

  

Abstract 

 The EAARL (Experimental Advanced Airborne Research Lidar) is investigated 

for accuracy in making detailed forest structural measurements and producing inferential 

statistics for remote monitoring and change detection of barrier island forest 

ecohydrology. Barrier island hydrology is likely to be affected by sea level rise associated 

with rising air and ocean temperatures. Physiology and structure of associated vegetation 

will respond according to depth to average water table and sand textural distribution in 

the rooting zone. Specifically, the major goals of the project are: a) intensively ground-

truth EAARL for forest structure characterization on the Mid-Atlantic barrier island 

habitats of Assateague Island National Seashore, MD (AINS) and Parramore Island, 

Virginia Coast Reserve (PIVCR); b) derive standard and unique lidar waveform metrics 

and test them in the estimation of field-measured metrics related to hydrological 

gradients; and c) apply the findings in a and b to development of a draft remote 

monitoring routine of the effects of sea level rise on island freshwater resources and 

dependant forest structure. 

 The EAARL can be deployed with high confidence in loblolly pine (Pinus Taeda 

L) and similar forest mensuration projects as done here for baseline biophysical 

description. These structure data are correlated with environmental gradients on AINS, 

thus providing an important reference state for continued ecological study. EAARL 
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significantly predicts in multiple regressions: plot-level volume, height indices, and basal 

area at coefficients of determination (R2) from 0.72 to 0.95. The system measures the 

directly-derived one-dimensional vertical metrics: maximum canopy height (MCH), 

height of peak canopy density (HPCD), and bare earth elevation (BEE) at standard errors 

of 1.8m, 1.3m, and 0.3m respectively or, 11.8, 13.9 and 45.8 nominal percent errors. Of 

special interest here is the introduction of a potential surrogate of MCH (canopy tops are 

routinely difficult to measure with small footprint lidars) in HPCD. The latter is better 

predicted by EAARL at an r2 of 0.89 compared to 0.80 for MCH while in the field, 

HPCD can predict true MCH at r2=0.77 (p<0.0001). 

 Unique approaches to lidar analyses in ecological studies are developed in this 

Chapter. A flexible total-canopy variation PCA (principal components analysis) is shown 

in an exploratory test to be an appropriate method for wide-scale vegetation typing by 

lidar full-waveform returns. In ecohydrological analyses, the lidar integrative three-

dimensional stand metric CRR (Canopy Reflection Ratio) models ground-collected PAI 

(Plant Area Index; measured with the common Li-Cor LAI-2000) by simple regression at 

an r2 of 0.73 (p<0.0001). It is apparent that PAI changes with leaf area change in the 

study area. P. taeda foliage levels are generally known to be relatively sensitive to water 

shortage, abscising leaves in drought. A soil water availability estimate based on depth to 

water table (DWT) and soil texture index (STI) is well correlated with PAI up to rs=0.54, 

p=0.004. Regular surveys for EAARL CRR and continued field measures of PAI and 

DWT/STI will help improve the relationship. Ideally, more intensive physiological 

measurements can be implemented for better assessments of direct effects, but as seen in 
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Chapter 3, this basic ecohydrological function can be applied now to making specific 

predictions of structural change to expect with rising water. 

 

4.1. Introduction 

 

 As part of the larger study researching the structural changes in forests across 

freshwater availability gradients for application to forecasting changes with sea level rise 

on barrier Islands of the Delmarva Peninsula – Assateague Island National Seashore 

(AINS) in Maryland and Parramore Island of the Virginia Coast Reserve LTER (Long 

Term Ecological Research) Site (PIVCR) – a lidar (Light Detection and Ranging) system 

is tested in predicting forest structure. This chapter constitutes the first comprehensive 

ground-verification of the EAARL (Experimental Advanced Airborne Research Lidar) in 

measurement of above-ground forest structure. A test in 2002 provided a relatively 

limited study of forest metrics, from which there is only qualitative assessments of 

predictive performance (A. Nayegandhi, unpublished data). Large-scale vegetation types 

were identified at the present study site using three-dimensional metrics, though it has not 

been thoroughly ground-truthed (A. Nayegandhi, unpublished data). Recently, 

Nayegandhi et al. (2006) found good agreement (r2 of 0.73 to 0.91) between ground and 

remote EAARL measures in the average heights of trees in informal plots.  

 The initial stages are presented in development of a monitoring protocol in which 

waveform lidar metrics are linked to water availability and hydrologic factors of wooded 

areas to assess vegetation differences due to sea-level change. Typical freshwater sources 

in sandy barrier island substrates are lenses of freshwater floating atop saltwater. Sea 
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level change could force shifts in water availability patterns as freshwater lens 

morphologies and elevations change. Plant area index (PAI) (m2 plant woody and foliar 

area:m2 ground area) and traditional forest metrics have been tested for their relationship 

to site moisture status at the plot scale; EAARL data products are analyzed for prediction 

of PAI and coarse structure to determine a remotely sensed metric sensitive to 

counterpart changes in moisture indicators. 

 Depth to water table (DWT) was originally hypothesized to negatively correlate 

with structural values. This was based on the theory that in sandy soils, height above 

water table can be a reliable predictor of water availability (Hayden et al. 1995), and 

findings that structure (leaf area in particular) depends on water availability (Grier and 

Running, 1977). CRR (Canopy Reflection Ratio) was the lidar waveform metric 

hypothesized to most closely approximate field-collected PAI (integrates foliar area), the 

most sensitive plot-level structural measure. These factors make for a simple remote 

monitoring framework where EAARL CRR predicts PAI which in turn indicates water 

availability. However, as seen in Chapter 3, there is a significant measure of unexplained 

variation in PAI changes as related to DWT.  

 With the addition of a soil texture factor, STI (soil texture index), some of the 

unexplained variation is resolved and an overall clearer depiction emerges of effects of 

rising average water tables. The soil profile needs to be described to allow for robust 

inferences from remote biophysical data that is circumstantially related to site moisture. 

And, as also seen in Chapter 3, community structure description (ratio of shrub area to 

tree area in a plot, for instance) enhances the indirect indication of site moisture status. 
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This mensuration capability is assessed for EAARL, and sources of error are shown to be 

explainable.  

 This project represents a step forward in what Omasa et al. (2007) describe as the 

thus far under-explored potential of lidar in monitoring vegetation for responses to 

stressors and obtaining “more accurate dynamic estimation of plant properties.” Other 

foreseeable applications of work started here include production forestry resource 

mensuration and studies of ecosystem carbon flow. Loblolly pine (Pinus taeda L) is an 

extensively studied species because of its economic importance. Results of this research 

will be useful to land managers and conservationists interested in forecasting changes in 

biomass and structures in a changing environment. Ecologists interested in system 

productivity can apply findings of coarse structural types to identify developmental 

stages. Shugart (2000) describes the importance of developmental dynamics and general 

biophysical structure in modeling the responses of physiological relationships to inputs in 

most forested ecosystems. For instance, differences in crown length – a plot-level index 

of which is replicated with EAARL – will signify developmental processes and “result in 

different light regimes that may influence ecophysiological leaf traits” (Nagel and 

O’Hara 2001) such as gas exchange, leaf Nitrogen, and specific leaf area (SLA - leaf 

area/unit leaf mass).  
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4.2. Background 

 

4.2.1. Lidar remote sensing 

 Lidar is the application of a metered laser pulse to a target and the digitization of 

the return path position and timing through three-dimensional space. An “active” as 

opposed to “passive” form of remote sensing of radiance, self-contained Lidar systems 

emit quantified energy packets at known angles, distances, rates and energies. This 

condition lends itself to less art in interpretations as these data are more readily directly-

truthed with traditional ground methods. 

 Early airborne lidars were discrete-return Altimeter Topographic Mapping (ATM) 

instruments. Still in use, these collect ranging data only while waveform-returning 

models measure the intensity of backscatter energy from all surfaces through the canopy 

at intervals determined by the system digitization rate (Fig. 1). Or as Nayegandhi et al. 

(2006) write, the waveform comprises “a time history of the return backscatter photons 

within the laser footprint.” This allows for the relative indexing of material density and 

area through a pulse’s path.  

 An airborne small-footprint lidar with full-waveform return capability (the 

EAARL) is employed in the present study to measure forest structure, and detect changes 

in structural metrics with gradients in site environmental qualities. The literature on 

waveform analyses is dominated by research with large-footprint lidars. Researchers have 

successfully predicted field-verified stand variables from lidar-derived information. 

Lefsky et al. (1999a) reliably inferred LAI (leaf area index) and biomass from lidar data, 

and others have found strong correlations between ground-collected basal area, mean 
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stem diameter (Drake et al. 2003), canopy height and leaf biomass (Means et al. 1999) 

and the related lidar metrics. The canopy height profile (CHP) and the canopy volume 

method (CVM) (reliable in estimating LAI) of Lefsky et al. (1999a) have proven 

instructive to analyses of whole-canopy data by providing ecologically significant, 

integrative metrics describing distribution of vegetation surfaces within a canopy.  
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Figure 1. An example of a lidar waveform 
returned from a 0.08ha land surface plot on 
Assateague Island National Seashore, August 
2004. Digital counts of backscattered photons 
are resolved to 50cm vertical resolution. 

 

 Similar objectives are pursued with small-footprint discrete-return lidar. Lim et al. 

(2003a), utilizing the first/last range and intensity returns of a 20cm footprint lidar 

(ALTM 1225) found agreement with their ground measures of, for example, LAI 

(hemispherical photo-derived), and biomass. The same instrument was successfully 

applied to the prediction of foliage distribution and light transmittance (Todd et al. 2003). 

Naesset (2002), in a stand assessment of standard production forestry metrics (with an 

ALTM 1210) found good agreements between the remote and ground data sets (lidar data 
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could explain 84-92% of the variation in the field data) where predictions of stem number 

were the least reliable of the measures.  

 Small footprint lidars can be limited in their ability to penetrate canopies at high 

scan angles (Means et al. 1999). Canopy height estimates are low in some coniferous 

forests, as there is lower probability of scanning a conical tree top with a smaller footprint 

(Gaveau and Hill 2003). This may be overcome to a degree by adjusting sampling 

density, and it would be reasonable to assume that the problem is less significant with the 

more rounded canopies of P. taeda at the AINS and PIVCR study sites. Lim et al. 

(2003a) write that lidar could indeed be more accurate than field measures with 

traditional instruments in determining canopy height because of inconsistent technique in 

the latter, including the common inability to see the top of the individual crown from the 

ground. The georeferencing and mensuration of all stems in this study was planned to 

enhance the power of validation tests. 

 

4.2.2. The EAARL lidar 

 The lidar instrument employed in this study is the NASA EAARL (Fig. 2) 

developed by Wayne Wright at NASA’s Wallop’s Island, Virginia facility. The survey 

and processing was conducted in cooperation with the USGS (United States Geological 

Survey) Center for Coastal and Watershed Studies (CCWS) (St. Petersburg, FL). USGS 

researchers developed the Airborne Lidar Processing System (ALPS) (Nayegandhi et al. 

2006) processing and visualization environment, and developed all processing code for 

EAARL data collected over AINS and PIVCR in 2004.  
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Figure 2. General EAARL survey configuration. The 
platform is a fixed wing Cessna aircraft. Flight 
positional data are corrected with kinematic 
differential GPS. Image courtesy of USGS. 

 

 EAARL is an example of a relatively new variety of airborne laser instrument – 

the full waveform-returning small-footprint lidar. EAARL’s footprint is 20cm, the 

spacing between each pulse is 2-4 meters (depending on flightline densities), and its 

swath width is approximately 240 meters. The one-nanosecond digitization rate 

corresponds to a vertical resolution of about 15cm. Nilsson (1996) introduced a similar 

instrument, yet the data storage available allowed for only about 17% of the waveforms. 

Though the EAARL wavelength (green: 532nm) is considerably less reflective in 

vegetation than that typical of terrestrial lidars (NIR: 900-1064nm), the information 

retrieved is unlikely degraded unless, perhaps, scene species vary widely in their 

brightness at that wavelength. The EAARL technical summary is (W. Wright, 

http://lidar.net ca. 2005): 
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The EAARL system is the first airborne lidar to 

simultaneously map submerged, subaerial, and vegetation 

covered topography. It uses a 5kHz 532nm 1.2-NS laser, a 

wide dynamic range high speed optical receiver, and a pair 

of multi-channel 4-Giga Sample/second waveform 

digitizers. The system digitizes 192 million samples each 

second and, using adaptive real-time processing, edits each 

waveform to accommodate and retain only the complex 

back-scatter of interest greatly reducing the amount of data 

which must be stored. The system effectively auto-adapts 

to the terrain, vegetation covered earth, or bathymetry 

being mapped. 

  

4.3. Methods 

 

4.3.1. General considerations 

 The following methods were designed with four main goals in mind. First is a 

detailed ground verification of EAARL at the plot scale. Second and ancillary to another 

area of study in this volume is the building of a strong correlative relationship between 

vegetation structural attributes and general hydrological status. Third is the association of 

ground-based and remotely-sensed changes in moisture-sensitive structural metrics. Last 

is the inclusion of guidance for monitoring this and similar natural systems utilizing the 

information-rich waveform to draw inferences of effects of environmental change. 
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4.3.2. Data collections 

 Refer to Chapter 2 for study area and field methodologies common to the project. 

An EAARL survey of AINS and PIVCR (Figure 3) was flown in August 2004. The raw 

horizontal resolution of about 3m is a function of flightline density, and the raw vertical 

resolution of 15cm is a function of the backscatter digitizing rate. High resolution (14cm) 

CIR imagery was collected coincident with the lidar data, yet it is not available due to 

technical problems.  

  

 
 
Figure 3. Assateague and Parramore Islands of the Delmarva 
Peninsula. 
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 Ground biophysical structure and environmental surveys of the 26 AINS plots 

were completed in 2005 as described in Chapter 2. These included the collection of 

continuous PAI measurements in the AINS plot network with the electronic LAI-2000 

(Li-Cor Biosciences), and, horizontal positions of plot centers and tree stems and average 

plot elevations with sub-meter accuracy survey-grade GPS and a total station survey 

instrument. The PIVCR ground surveys were abbreviated in comparison to AINS due to 

the extremely degraded condition of the canopy and the complicated logistics of reaching 

the island with due frequency.  

 

4.3.3. EAARL data descriptions 

 16.3m radius composite large footprint waveforms (LFPW) (Figure 4) were 

synthesized at ground plot centers by averaging raw waveforms in the NASA/USGS 

ALPS environment. Laser returns are georeferenced using aircraft GPS and attitude 

information. Conversion to the desired coordinate system, and the processing of five 

standard metrics (Fig. 4) for composite waveforms at desired center points, was 

programmed in ALPS: bare earth elevation (BEE), maximum canopy height (MCH), 

ground reflection ratio (GRR), canopy reflection ratio (CRR), and height of median 

energy (HOME). The LFPW’s resultant centroid location is a function of laser posting 

separation distance (raw horizontal resolution) and random IFOV (instantaneous field of 

view) location. 

 BEE is determined with an iterative random consensus filter (IRCF) process 

algorithm (Nayegandhi, unpublished), and MCH is the maximum canopy height gleaned 

from the zero-crossing at the second derivative of the top of the waveform (Nayegandhi 
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et. al., 2006). CRR, GRR, HOME are then computed from the energy return profile 

between BEE and MCH. Resultant vertical resolution is 50cm. Large-scale geotiff 

coverages (2km X 2km) of MCH and BEE metrics (2002 data) at about 1.5m raw 

horizontal resolution (1m resampled final resolution) have been produced by USGS 

CCWS. Five-meter resolution layers were produced in the present study that were later 

found to be inaccurate. The problem appears to be within the coverage generation 

commands, though it has yet to be identified. GIS (Geographic Information Systems)-

ready data layers will be developed with the corrected methods when adapting the 

research to wider monitoring operations. 

 
Plot 29202 16.3 M Waveform

-17.5

-12.5

-7.5

-2.5

2.5

7.5

12.5

17.5

22.5

0 10000 20000 30000 40000 50000 60000 70000

Energy Backscatter (Counts)

El
ev

at
io

n 
(N

A
V

D
 8

8)

BEE

HOME

MCH

CR

GR

Plot 29202 16.3 M Waveform

-17.5

-12.5

-7.5

-2.5

2.5

7.5

12.5

17.5

22.5

0 10000 20000 30000 40000 50000 60000 70000

Energy Backscatter (Counts)

El
ev

at
io

n 
(N

A
V

D
 8

8)

BEE

HOME

MCH

CR

GR

 
 
Figure 4. A raw EAARL composite waveform (left) and graphical metric descriptions (right). 
MCH=maximum canopy height; BEE=bare earth elevation; CR=total canopy reflection (energy backscatter 
counts); GR=total ground reflection; HOME=height of median energy. CRR=canopy reflection ratio: 
CR/(CR+GR). GRR=ground reflection ratio: GR/(CR+GR). 
 

4.3.4. Analyses 

 All statistical analyses described in this section are performed with SAS software 

(SAS Institute, 2002-2003). EAARL and field measures of plot location, BEE, MCH, and 
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height of peak tree canopy density/reflection energy (HPCD) are directly compared. 

Shrub (dripline) canopy area (SCA) can not be directly compared between field and 

remote data sets. Field-collected tree crown lengths were combined for each plot into a 

foliated crown presence histogram (Fig. 5). As there are unmeasured gaps in foliation, 

these only represent the maximum likelihood of finding foliated branches at 10cm 

vertical segments (see Appendix C). The EAARL HPCD values were taken as the height 

of the peak backscatter count in the canopy return of the waveform (Fig. 5), and field 

HPCD as height of the peak frequency in the crown presence histograms. This metric of a 

maximum density-height will vary among sites according to developmental stage, 

moisture and microclimate. Development of HPCD as a metric is undertaken to 

compensate for expected loss of canopy top information in MCH as measured by 

EAARL. It is expected that across a broad study area, HPCD could be as effective as 

maximum height in site quality indication (see Chapter 2).  
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Figure 5. A comparison of an EAARL backscatter count spectrum (left) and a field plot canopy foliage 
presence histogram (right). 
 

 Standard field measures were processed to plot-level values of basal area (BA): 

π*(dbh/2)2, where dbh is the cumulative diameter at breast height of all plot trees, and 



 

 

151
volume: (0.5(PTH)π(dbh/2)2 (Whittaker et al., 1974, parabolic volume estimate) where 

PTH is average plot tree height. While these and the field one-dimensional measures 

were assumed to strongly intercorrelate, inclusion of variable levels of structural 

organization offer greater probability to develop functional relationships for precise 

remote monitoring of the structure-water interaction.  

 All field biophysical variables were tested for correlations with the hydrological 

indicators STI (a ratio of fine to medium sand fractions), average DWT, and the product 

of these two variables: DWST (see Chapter 3). Recommendations for EAARL-based 

monitoring of the ecohydrology of the dynamic barrier island forest system follow from 

these results. PAI is the most temporally sensitive metric to be related to variations in site 

moisture. It is for this reason all EAARL metrics are regressed on PAI to develop a 

model that will enable remote monitoring of plant (and leaf) area change.  

 As detailed in Chapter 2, field plot measures of PAI, MCH, HPCD, SCA, BA and 

Maximum Age (maxage; by tree ring analysis) are used to develop two major “bio-types” 

from PCA (Principal Components Analysis) and subsequent cluster analysis on the 

results of the regression of plots’ PC1 and PC2 scores. The environmental variables STI, 

soil organic matter (SOM), distance from ocean shoreline (distshore), maxage 

(approximates the time since disturbance), average DWT, and BEE are similarly 

processed into six “site types” through cluster analysis. These classifications are 

necessary here to focus structural monitoring schemes and to qualify the wider 

ecohydrological predictive theories. 

 To explore a quantitative assessment of the similarities in patterns of canopy 

density in remote and field data sets, a methodology by Caylor et al. (2004) was adapted 
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to this study. Principal components (PC) were derived from all field canopy density 

frequency distributions and EAARL reflection counts by vertical one-meter intervals. 

PC’s were assessed for the original vertical segments contributing significant amounts of 

variation to the new PCA variable set. Plots were grouped into site types; their scores in 

PC1 and PC2 of the respective (field, lidar) canopy representations were then used to 

graph a qualitative comparison between field and lidar PC clustering. 

 This procedure appears likely to provide another means of fine-tuning 

assessments of effects of changing water availability on vegetation communities. Caylor 

et al. (2004) used the technique to differentiate sites on a moisture gradient by vertical 

locations of highest total variance in leaf area, and to tailor productivity models. As they 

note, PCA offers an improvement in precision because “simple means and variances of 

vegetation [structure] are poor representatives of structural heterogeneity in semi-arid 

ecosystems.” 

 Finally, a conceptual model of a monitoring and research project with the tools 

and products described here is diagrammed per recommendations in Fancy et al. (2009). 

 

4.4. Results 

 

4.4.1. Direct comparisons 

 Results indicate that EAARL can often reliably estimate standard forest metrics at 

the scale of ground plots (0.08ha or 835 m2). Table 1 lists the mean absolute errors of 

directly-derived EAARL metric values. MCH – a good overall indicator of site quality 

(Spurr and Barnes, 1980) – is in error by 1.9m on average at the plot level. As expected, 
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EAARL underestimated MCH in most cases. This bias is widely reported in the lidar 

literature and occurs because individual tree tops are often missed, especially by the more 

sharply-focused small footprint models. This could also be explained by low stocking 

density or by the LFPW offset from plot boundaries in some cases; however, less overall 

error was originally expected because of the relatively broad tops of P. taeda “oval”-

shaped (Gilman and Watson 2006; visual confirmation) crowns. 

 The LFPW’s are displaced from ground plot centers up to 3m (about 1 raw pixel 

width) and generally to the southeast (Table 1). This implies a possible 4m offset at plot 

geolocation when the internal EAARL error range of about 1m is included. For plot-level 

statistics this may introduce a comparability issue. BEE, however, is within about one-

half meter. This is a good result and points to EAARL’s fine-scale capabilities. 

Assateague’s relict dune-derived topography changes at very short spatial scales with 

plots ranging up to 2.3m in elevation (complete slope placements were avoided). Fairly 

precise BEE also supports the assumption that the bulk of MCH error is due to simple 

canopy exclusion by the pulse IFOV as opposed to an overriding geolocation issue.  

 

16.3m Plot Center 
Easting

16.3m Plot Center 
Northing

Total Centroid 
Displacement BEE MCH HPCD

MAE 0.8 2.6 2.8 (Southeast) 0.4 1.9 1.2
Standard Error 0.4 0.4 0.5 0.3 1.8 1.3

MAE 0.6 2.2 2.3 (Southeast) 1.1 1.8 2.4*
Standard Error 1.0 0.6 0.9 1.2 2.7 0.5*

Assateague Island, n=26

Parramore Island, n=4

 
 

Table 1. The mean absolute error (MAE) and standard deviation of MAE (standard error) between 
directly measured field values and EAARL values in the 16.3m field plots and LFPW’s. Centroid 
displacement is generally directed to the Southeast. BEE=bare earth elevation (m), 
MCH=maximum canopy height (m), and HPCD=height of peak canopy density (m). 
* n=2. 
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 At AINS, accuracy improves from MCH to HPCD by about 0.7m, though 

standard error (SE) is still relatively high. Note that sample size is much smaller at 

PIVCR so that most standard errors are greater than those from AINS. HPCD in ground-

collected crown lengths are from only 2 sites at PIVCR. The SE here (0.5m) is quite low 

compared to AINS due to the very denuded canopy in the plots, so that occlusion (Lefsky 

et al. 1999a) of laser energy by higher canopy material to lower reaches is less likely. 

PIVCR analyses are limited to these direct comparisons because of the rapidly changing 

canopy. Figure 6 displays the graphical qualitative comparisons of EAARL and field 

canopies and the field stem profiles of the ten plots equipped with automatic water table 

recorders (the ‘water plots’), and the three permanent PIVCR plots; Appendix A contains 

these figures for the entire plot network. All graphics are depicted relative to average 

ground level for the 0.08ha plots.  

 Results of the simple regression models (general linear model procedure, “proc 

glm”, SAS Institute 2002-2003) of EAARL metrics and the field parameters are shown in 

Figure 7. The field parameter values are charted against EAARL-predicted values for 

AINS plots only (n=26). The EAARL MCH results in a prediction of plot maximum 

height at an r2 (coefficient of determination) of 0.80 and RMSE (root mean square error) 

of 2.44. Predictions of HPCD are better at r2 of 0.89 and RMSE of 1.45. AINS field 

HPCD predicts field MCH at an r2 of 0.77, and RMSE of 2.67. Elevations for BEE are 

predicted with a RMSE of 0.31, yet an r2 of only 0.67. BEE comparisons are based on the 

19 samples for which average field elevation values were collected. 

 

 



 

 

155

 

19002

21801

21901

14

8

23

21903

16

27703

15

19002

21801

21901

14

8

23

21903

16

27703

1515

 
Figure 6. From left: plot number, the EAARL waveform, field crown presence frequency histogram, 
maximum field height (m), and stem profile (crown length is shaded) for the 10 instrumented water plots 
at AINS and 3 measured PIVCR plots. All figures are referenced to plot average bare earth elevation. 
*Note: PIVCR 91 field data are not complete. 
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Figure 6. Continued from above. 
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Figure 7. Regressions of the field-collected parameters against EAARL-predicted values. From left the 
metrics of interest are: maximum canopy height (MCH), height of peak canopy density (HPCD), and bare 
earth elevation (BEE). Units are in meters. 
 

4.4.2. Multiple regressions for stand-level metrics 

 To test applicability of the EAARL in basic forestry mensuration needs, stepwise 

regressions, using the SAS (SAS Institute, 2002-2003) “reg” procedure, were developed 

in the manner of Lefsky et al. (1999a) for several typical stand metrics including volume 

(vol) and BA (Fig. 8). MCH and HOME were retained in predicting BA; and CRR and 

HOME were retained for tree Mean Maximum Height (MMH-tree), MMH-all (includes 

shrub heights), and vol. As CRR does not significantly improve the model for vol, and 

decreases the significance, it is not included in the final model. All final models are 

significant to p<0.07. r2 values range from 0.72 for BA to 0.95 for vol. The respective 

RMSE values are included in the individual regression graphs of Figure 8. 

 

4.4.3. PAI, and relationships of structural variables to site moisture 

 PAI represents the finest structure currently resolved on a plot-space and temporal 

basis as it incorporates leaf area change. PAI is also significantly positively correlated to 

coarse structure measures for the 26 AINS plots (Table 2). Though the collections were 

not timed equally among plots, the index clearly changes with seasonal influence in the 
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major bio-types (Figure 9). Bio-type 1 is comprised of plots of greater biomass and 

height; bio-type 2 sites are shorter with generally underdeveloped form.  
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Figure 8. Predictions of stand variables from multiple stepwise regressions with standard EAARL 
metrics MCH, CRR and HOME. Note coefficients of determination (R2) and root mean square error 
(RMSE) values in graph spaces. 

 

Mean Maximum 
Height, Trees

Maximum 
Height

Height of Peak 
Canopy Density

Basal 
Area Volume Maximum 

PAI
Spearman Corr. Coeff. 0.58 0.71 0.52 0.51 0.66 0.95

p-value 0.002 <0.0001 0.007 0.008 <0.0005 <0.0001

Average PAI (2005) and Forest Structure

 
 
Table 2. Correlations among average PAI from 2005 and structural metrics collected in all plots, n=26. 
Maximum PAI is included as a consistency check. 
 

 P. taeda foliage is sensitive to drought, and noted for abscising leaves relatively 

quickly under moisture stress (Vose and Allen 1991). PAI and leaf litter correlations were 
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conducted to determine if there is a regular differential with PAI and litter-driven LAI 

loss. Lagging the total litter weight gain and coincident PAI change by approximately 14 

days, the correlation analyses resulted in an insignificant negative correlation (Spearman 

rank correlation, rs) in bio-type 1 (rs=-0.40) and weakly significant positive correlation in 

bio-type 2 (rs=0.62, p=0.10) as detailed in Chapter 3. 
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Figure 9. PAI values across 2005 study period for plots in the biophysical bio-types 1 (n=15) and 2 (n=10).  
 

 PAI correlates weakly positively with average DWT (rs = 0.46, p=0.13), yet SCA 

and maxage correlate strongly (rs =-0.80, p=0.01 and rs =0.63, p=0.05, respectively), and 

HPCD is weakly positively correlated. STI, on the other hand correlates more 

significantly with all the other structural metrics. 

 

4.4.4. The EAARL correlates for moisture status monitoring 

 PAI is modeled well by EAARL CRR over the entire range at r2=0.73, p < 

0.0001. At the biophysical cluster level, the coefficient of determination diverges 

significantly, as bio-type 2 (generally shorter, younger) PAI is more confidently predicted 

than bio-type 1 (generally taller, older) PAI. Figure 10 shows the model results for the 
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network-wide, bio-type 1 and bio-type 2 PAI-CRR functions, for which RMSE is, 

respectively, 0.47, 0.53, and 0.21. 
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Figure 10. Regressions of EAARL CRR-predicted PAI against the field-collected values. From left to 
right: All sites (n=27), bio-type 1 (n=15), and bio-types 2 (n=10). 

 

 STI is a consistent positive factor in biomass growth. Soil textural proportions 

will likely not change in a monitoring time-frame, and they are more interwoven with 

longer term development than is the much more plastic DWT. However, STI plays a 

major role in characterizing water availability through its interaction with water table 

levels (see Chapter 3). The measure may be a key to understanding how individual stands 

are going to need to adapt to changing water tables or face decline. 

 SCA and maxage performed the best out of the common structural variables in 

DWT tests, but these are resolvable only by ground measures at this time. Average plot 

SCA is 85m2 (standard deviation, s=104, coefficient of variation, CV=123%) in bio-type 

1, and 145 m2 (s=81, CV=56%) in bio-type 2. SCA is a broad vegetation type indicator, 

albeit very dependent on water table position, and may not change at the temporal scale 

needed for monitoring changes due to sea level rise. PAI requires more investigation and 

sampling to generate reliable models, but the results thus far indicate PAI adequacy in 

integrating leaf area change (the general trends per Fig. 9), and its fair correspondence 

with DWT. While stand-level stem-only measures are predicted more accurately (Fig. 8) 
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by EAARL than is PAI, these also will not change at the scales necessary for near-term 

monitoring schedules. Direct derivation of a subcanopy energy peak (not shown) entailed 

a 1.3m MAE (mean absolute error) or an average 48% of total stratum height, and is thus 

unacceptable for moisture status inference. The factors leading to subcanopy information 

loss are discussed below. 

 

4.4.5. Alternative method of canopy information comparisons: principal 

 components analysis 

 In the canopy PCA, all crown presence frequencies from the field and all EAARL 

backscatter counts were entered separately into a PCA for vertical one meter increments 

(downward from maximum) over the five environmental site types (1a, 1b, 2, 3, 4). Site 

type 5, comprising two field plots, was excluded as it skewed the distribution (this site 

type is located in the structurally well-developed “Green Run” portion of Assateague). 

This reduced the total number of PC’s from 30 to 23 and the sample size to n=24.  

 The first two PC’s of field canopy account for 76% of total variation, and are 

loaded by the 16m and 2.5m heights, respectively. In the EAARL canopy PCA, 62% of 

total variation is represented in the first two PC’s (loaded by the 13.5m and 18m heights, 

respectively), and 75% in the first three. Table 3 lists the principal component statistics; 

PC locations are shown superimposed across all mean plot height profiles in Figure 11; 

and the arrangements of the five site types in EAARL and field PC space are mapped in 

Figure 12. Note that canopy weighting measures are included in Figure 11 for reference: 

MMH-tree is graphed in the field chart, and HOME in the EAARL chart. Approximate 
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minimum foliage heights (terminating crown lengths) are also located on the field chart 

of Figure 11 for reference. 

PC1 % Total 
Variation

PC2 % Total 
Variation PC1 Loading PC2 Loading

Field 43.3 32.5 16m 2.5m

EAARL 37.8 24.2 13.5m 18m

Canopy PCA Statistics

 
 
Table 3. Numerical results of the PCA on canopy returns.  
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Figure 11. The PC loading locations in the canopy across all plots in the field measures of maximum 
foliage presence frequency (left) and the EAARL returns of backscatter energy (right). Mean maximum 
tree height is paired with maximum height in the field chart, and minimum crown length is indicated. 
Height of median energy (HOME) is coupled with maximum height in the EAARL chart.  
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Figure 12. Site type groups plotted in canopy density PCA space (PC1 X PC2) for field and 
EAARL according to their respective scores. 
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 Variation is limited to the upper canopy in the EAARL data (Fig. 11) because of 

occlusion of the EAARL laser, illustrating the inconsequence of not measuring shrub 

crown lengths in the field (using tree information only). Inclusion of some modification 

of the relative shrub canopy area measure in the tree canopy results would therefore be 

unlikely to change the agreement between PC sets. More experimentation to find a 

reliable subcanopy representation in EAARL should be a priority (see “Ecohydrological 

relationships and monitoring” in the Discussion below). 

 As HPCD is in better agreement between the data sets (Fig. 7) than the maximum 

heights, the same PCA exercise is run on the canopy information with HPCD as the upper 

bound to test if the loss of canopy tops can be overcome in comparing variation. The first 

two principal components are at a more comparable distribution in the two canopy 

representations (Fig. 13), though cumulative variation in PC1 and PC2 is now only 55% 

in EAARL and 56% in field.  
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Figure 13. New PC loading locations with the heights to canopy peak density (HPCD) as upper 
bounds in the field measures of maximum foliage presence frequency (left) and the EAARL returns of 
backscatter energy (right). Mean maximum tree height is included for reference in the field chart, and 
minimum crown lengths are indicated. Height of median energy (HOME) is coupled with HPCD in the 
EAARL chart. 
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 Ungrouping data and testing blind association by cluster analysis (by average 

distance) for both PCA designs tentatively shows that this canopy peak PCA is more 

effective at drawing out matching groups (by visual inspection of cluster dendrograms, 

not shown) by removal of canopy top outliers, and the new geometry in the field PC 

space (Fig. 14) resulting from the PC2 shift from sub to upper-canopy.  
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Figure 14. Site type groups plotted in the new HPCD-based canopy density principal component 
space (PC1 X PC2) for field and EAARL according to their respective scores. 

 

 

4.5. Discussion 

 

4.5.1. Direct comparisons 

 Direct comparisons show the EAARL accuracy to be comparable to other lidar 

instruments and better in many cases (Lim et al. 2003b has a review). Previous EAARL 

work (Nayegandhi et al., 2006) based on a small (n=6) subset of the data at AINS found 

an RMSE of 0.8 in MCH regression analysis compared to the 2.4 RMSE in the present 

study. With the increase in sample size, however, r2 has increased to 0.80 from 0.73 (Fig. 

7). There are 5 outliers, all with relatively high maximum field heights, and in all but one 
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the field value exceeds the EAARL estimate. Outlier plots except for one also have 

relatively low stem density. As noted earlier, canopy top exclusion is common in lidar 

surveys. This fact coupled with the greater range possible for error in tall, open stands 

may have produced the error. Two outliers have a large BEE range and averaging this for 

the EAARL BEE value would necessarily skew the plot-level MCH (LFPW synthesis 

begins with the isolation of BEE from the total backscatter “cloud”). In the short term, 

finer resolution LFPW’s may result in better BEE agreement with the field. Later, higher 

EAARL sampling density along with better georectification (the tallest trees may not be 

included in the LFPW boundary) would likely increase accuracy substantially for BEE 

and MCH (see Table 1 for error magnitudes). 

 The dramatic decrease in MCH prediction success (r2=0.01, RMSE=2.9, not 

shown) at PIVCR is expected because of the extremely low foliar density and low stem 

density (Fig. 6), as well as the very small sample population (n=5). Laser posting density 

requirements for better MCH prediction would be prohibitively high in greatly impacted 

canopies. At plot PIVCR 65 (Fig. 6), a significant difference in canopy material presence 

could have resulted from the time lag of field measures after the EAARL survey (about 1 

year) as canopy decline continued. A close inspection of the stem profile chart (Fig. 6) 

for PIVCR 12 may explain the discrepancy of 6.7m in MCH as there are only 7 dominant 

stems with some foliage remaining. One may assume from this that the majority of 

damage was done by the time of the EAARL survey at PIVCR 12, and decline was 

slower and continuous at PIVCR 65. This is supported by the CRR values at the time: 

0.99 for PIVCR 65, and 0.49 for PIVCR 12. Notably, maximum CRR at the intact AINS 

area was 0.94. 
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 In direct comparisons between field and EAARL metrics, HPCD is a readily-

contrasted attribute. HPCD positions are visible in the full waveform and crown presence 

frequency spectrums of Figure 6 and Appendix A. Prediction for HPCD by EAARL is 

better than MCH prediction (Fig. 7) while field HPCD correlates better than field MCH 

with the other structural variables: vol, SCA (negatively), BA and maxage (Fig. 15); 

MCH is better correlated with PAI. 
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Figure 15. Correlations of height of peak canopy 
density (HPCD) and maximum canopy height (MCH) 
with the other major structural parameters plant area 
index (PAI), parabolic volume (Vol), shrub canopy 
dripline area (SCA), basal area (BA), and maximum 
age of trees in field plots (maxage). PAI, vol and 
SCA were log transformed to normal for Pearson r 
correlation, and BA and maximum age are Spearman 
rank rs correlated (non-normally distributed). All are 
significant at p<0.05 except SCA. 

  

 HPCD is a plausible surrogate for MCH in lidar studies. Researchers and 

managers can begin compensating for the loss of canopy top and subcanopy information 

in EAARL and other lidar returns by the simple collection of the crown length measure in 

field surveys. EAARL has yet to be tested in conical-shaped tree stands, but this would 
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likely decrease maximum height accuracy and mandate the use of HPCD to a greater 

extent. While MCH is a good overall indicator of site quality for a specified area, HPCD 

may better represent change in stocking density and, therefore, developmental stage. 

 EAARL HPCD, however, is eliminated in the stepwise regressions to predict field 

stand-level metrics (Fig. 8) while MCH and HOME are retained as these two remote 

measurements are more sensitive to within-plot vertical variability. Work is continuing 

on utilizing the total field crown presence and EAARL crown energy return information 

maximally and efficiently. The respective frequency data are to be characterized and 

compared with distributional statistics in Kolmogorov-Smirnov tests (pers. comm. G. 

Okin) based on the empirical distribution function (Gibbons and Chakraborti 1992). 

 Another one-dimensional lidar metric, HOME, is likely indicative of weighting in 

a leaf area index profile as originally employed by Aber (1979) as the foliage height 

profile and later modified for lidar by Lefsky et al. (1999b) as the canopy height profile 

(CHP). These result from a more labor-intensive process of vertically stratified cover 

estimates and their conversion to leaf area using fine allometric equations. While the 

method comprehensively truths waveform returns, it is more suited to large footprint 

lidars because relativity of the energy profile is self-contained within the plot-sized 

(about 10m diameter) pulses. 

 

4.5.2. Canopy profiles  

 Collection of detailed woody vegetation structure data including crown lengths 

enables the development of theories of field/remote disagreement on a plot-by-plot basis. 

Those plots with fairly continuous upper canopies as seen in the stem profiles of crown 
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and bole lengths (see Figure 6 and Appendix A), and those of relatively tall stature are 

generally subject to some occlusion and loss of subcanopy information. To detail some of 

the important points of discrepancy, a few of the plots serve as examples. Inspecting the 

EAARL waveform for plot 29802 (Appendix A) illustrates the complications imposed by 

occlusion of incident energy in a canopy’s upper portions. A strongly bimodal canopy in 

the field crown frequency histogram, the subcanopy is substantially reduced in the 

EAARL return. A few issues may be at work, including: simple height-wise and canopy 

material occluding by numerous tall trees; and the subcanopy preponderance of Ilex 

opaca (American holly), a smooth and shiny-leaved species that may reflect incident 

laser radiation specularly, away from the sensing telescope. I. opaca is not common in 

the AINS plot network. 

 Another significant challenge in the processing of lidar data is the accurate 

depiction of an average bare earth topography. In plot 29202 (Fig. 6) there is a large bare 

earth elevation (BEE) range (2.3m) that leads to a disagreement of 1.2 meters in average 

BEE. The rate of change over the plot is too high to be precisely depicted at the present 

resolution (0.08ha). Ground surfaces will necessarily be registered as vegetation. As there 

is a 4.5m MCH underestimation here, readings below areal-density thresholds have been 

eliminated by the IRCF process (waveform processing was not done in the “interactive” 

mode that allows manual override in tolerances). This condition can also be compounded 

by the canopy top undersampling mentioned previously. 

 Georectification imprecision is of concern as may be seen in a number of under-

matched profiles. EAARL oversampling of ground or canopy area in relation to what is 

measured in the field plot could lead to errors in all directly compared measures (one-
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dimensional metrics). While generally being less sensitive to a few meters misalignment, 

integrative measures like CRR may disagree significantly with field correlates like PAI 

from one vegetation type to another (see Fig. 10 for illustration of the bio-type prediction 

inconsistency). 

 

4.5.3. Multiple regression models 

 Lefsky et al. (1999a) employed multiple stepwise regression (MSR) to asses 

SLICER (Scanning Lidar Imager of Canopies by Echo Recovery) large footprint 

waveform lidar in Northwest USA conifer forests. They isolated about 11 variables from 

lidar data to run MSR in predictions of embedded stand variables like mean dbh and the 

number of stems greater than 100cm dbh, and integrative measures like LAI. The same 

instrument was tested this way by Means et al. (1999); they found that two measures of 

stand height (weighted and maximum) and a canopy reflection sum, predicted total 

above-ground biomass at an r2 of 0.96 with MSR, among other significant results.  

 MCH, CRR, HOME, and HPCD are made available in the MSR models of AINS 

stand-level variables MMH-tree, MMH-all, vol, and BA (Fig. 8). HPCD is not retained at 

the cutoff p=0.15 significance level perhaps because it is related more to foliage 

concentration than the others, and is more randomly affected by occlusion. The field 

stand descriptors MMH-tree (r2=0.86), MMH-all (r2=0.84), and vol (r2=0.95) are modeled 

by the type-sensitive CRR and precisely weighted HOME. BA (r2=0.72), an embedded 

feature, is interdependent on maximum height and stocking levels, and is best modeled 

with the terminal MCH and density-dependent HOME. 
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 EAARL can be put to immediate use in forest mensuration projects as seen in the 

results above. AINS forests are unique, but because of NPS protections, can not be 

harvested to provide site-specific biophysical allometric relationships. In more well-

studied areas, accurate field biomass and LAI values can likely be readily produced for 

remote modeling by EAARL metrics.  

 

4.5.4. Canopy principal components analysis 

 The canopy profile comparison with stem profile (Fig. 6 and App. A) is a limited 

visualization method to make qualitative assessments and guide specific interpretations. 

The PCA set forth by Caylor et al. (2004) holds great potential in comparing multi-

dimensional structure data among remote and field data sets, including material density in 

laser backscatter counts and crown presence frequency. To our knowledge, PCA has not 

previously been applied to lidar studies in this manner. Spectral PCA is regularly 

employed in passive optical remote sensing analyses, and others have used PCA in spatial 

pattern characterization of discrete return lidar in one and two dimensions (Ollier et al. 

2003 and Frazer et al. 2005, respectively). 

 Caylor et al. (2004) looked at groupings of sites according to average leaf area 

distribution by regular vertical increment. In the present study, the PCA results between 

the field and remote representations of canopy density distribution are qualitatively 

examined and assessed for the routine’s potential for quantitative analyses. Widlowski et 

al. (2004), in a discussion focused on examples and current deficiencies in the derivation 

of canopy structure from remote sensing, state “the availability of quantitative 

information on the structure and spatial distribution of terrestrial surface types across the 
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globe (preferably at regular intervals) would…improve the biome-specific 

parameterization of biophysical processes…”.  

 The canopy principal components are assessed for structural group signification 

by the five environmental types. These are summarized by major structural parameters in 

Figure 16; recall that the outlier site type 5 is excluded from the PCA. Site types 1b and 2 

vary mainly along the PC2 axis which is dominated by variation in the 2-3 meter vertical 

segment range (Fig. 12, Table 3); note this is just above the upper limit (1.9m) of lowest 

crown lengths. These are generally multi-aged, small-stature, variably-stocked stands 

with substrates of low water holding and nutritive capacities. Site types 1a and 3 are 

average to tall stands with more variation along the 15-17meter-loaded PC1 axis; note the 

average maximum MCH for the network is 15.9m. The environment in these plots is 

generally moderate, with average elevations and average to good soil productivity. Site 

type 4 encompasses the deep soil, high biomass, even-aged stands that also vary along 

PC1. 
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Figure 16. Major biophysical parameters in the six environmental site types used to stratify PCA and other 
analyses. 
 

 Clearly, PC1 and PC2 interactions are fairly analogous between the field and 

remote data sets, with similar site clustering – yet rotations of the functional sets are 
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unequal (Figure 12). The axis of variation is tilted from a predominant PC2 in the field to 

a more varied PC1 in EAARL.  

 PC loadings are not automatically correspondent between the two data sets. The 

EAARL PC1 loading (13.5m) is not comparable to the average MCH of 14.7m in the 

remote data nor is it close to the average MMH-all of 9.09m in the field (Table 4). 

EAARL PC1 could be explained however, by the random combinations at plot level of 

canopy top misreading and the pulse-return decay downward from this artificial canopy 

top. Rotation of the PC space appears to be due to EAARL PC2 residing in the upper 

edge of these canopies, where as stated, random effects of survey posting space and real 

canopy topography interact in returns. Note also that the lower canopy is neglected in 

PCA due to occlusion and its equalization effect on information below the dominant 

canopy. 

 

Maximum MMH-all 17.20
Minimum MMH-all 4.69

Mean 9.09
St. Dev. Plot Height 3.23

CV 36%

Mean Maximum Height (MMH) - All Stems

 
 
Table 4. Field plot mean maximum height (m) of all stems (trees 
and shrubs) for the entire plot network (n=26). EAARL principal 
component loadings do not automatically correspond with these 
standard variables and appear to be subject to the unpredictable 
nature of laser incidence and penetration. CV is the coefficient of 
variation. 

 

 The inclusion of the lowest terminating crown presence in the field data – at times 

well removed down the bole from the bulk of the continuous crown (see Appendix B) – 

may be overstating the canopy density to the point of creating false variation at the lower 
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levels (PC2 here). Ends of continuous crown should be recorded and used to bound 

crown divisions in the future.  

 With continued calibration of the PCA method, the alternate use of the HPCD 

heights as upper physical bound on available variation in PCA should be further 

investigated in studies where tree tops are underrepresented. Lower total variation in the 

first two PC’s here (Fig. 13) is due to the new compressed nature of the profiles, and the 

result of more equitable weighting (Nichols 1977) among the levels of canopy. This is 

not an optimal case for typing as it may lead to non-resolvable (Nichols 1977) canopy 

material distributions at our scale. It is initially apparent, however, that the groupings and 

rotations are better matched between field and lidar data sets (Fig. 14 compared to Fig. 

12). Also, comparison of PC-loading locations (Fig. 13) show the HPCD-bounded sets 

are off by a distance (1-2 meters) and direction (EAARL variation is shifted upward from 

field variation) attributable to the physics of laser occlusion. 

 The fact that the principal components are not immediately transferable between 

data sets suspends meaningful conclusions. However, the potential utility of PCA is 

readily evident for vegetation-classification procedures, environmental site type 

prediction, and habitat characterization with canopy return information in the near term. 

Better agreement between field and remote variation may be a simple matter of 

increasing the arbitrary resolution of the current one-meter canopy segmentation units.  

 Agencies like the NPS are very interested in the creation of precise and accurate 

vegetation maps for management purposes. Lidar canopy PCA could outperform related 

methods of imagery interpretation and provide for more detailed vegetation maps. The 

subsampling of large-scale data tiles in GIS environments for canopy waveform quanta 
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would be a straightforward implementation of the PCA method. Widlowski et al. (2004) 

state that such standardized structural variation description in remote sensing data can 

“allow for better assessment of the effectiveness of specific management practices for 

carbon sequestration and conservation…”. With increased analysis time and more data 

(especially allometric relationships for biomass) precise production models based on 

structural type (E.g., Shugart 2000, Caylor et al. 2004) could be developed and made 

dynamic enough to model change expected over time.  

 

4.5.5. Occlusion 

 It can not be taken for granted that occlusion occurs because some layers are 

diminished or absent from the subcanopy returns. In an attempt to isolate causation of 

reduced variation below the HPCD of EAARL waveforms it is necessary to look at 

individual plot species distribution in the subcanopy as there may be inherent foliar 

properties leading to variation of “the diffuse component of the backscattered radiation” 

(Kalshoven et al. 1995). There may also be some disproportional effects of “range 

walk…due to backscatter strength variations” (Jensen 2000). Studies determining 

backscatter intensity differences between species appear limited. In one example, 

Holmgren and Persson (2004) find very good predictability between pine and spruce 

using empirical reflection frequency and intensity data derivatives related to the relative 

infiltration of pulses through each species to the forest floor and the “standard deviation 

of the intensity of the returned pulses.”  

 Kaasalainen et al. (1995) attempt to isolate specific surface properties and their 

effects on laser return intensity for calibration purposes. They find that surface 
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characteristics other than surface brightness (the nominal reflectance at a specific 

wavelength) “dominate …the optical properties in backscatter.” Foliage internal elements 

are generally transparent to green visible light (Kalshoven et al. 1995), so surface 

roughness will play a larger role in green (532nm – the EAARL laser wavelength) than in 

NIR (1064nm) laser reflectivity physics. Kalshoven and Dabney (1993) show that 

depolarization (the increase of diffuse scattering) signatures are unique within vegetative 

divisions (conifer and broadleaf) as tested, and green light reflection depolarization is 

generally greater in the tested conifers (perhaps due to increased surface area and leaf 

angles) than in the broadleaf species. They do not test P. taeda, and if their result is 

extended to AINS and PIVCR, I. opaca and M. cerifera returns should be detected from 

under P. taeda.  

 Referring to the respective Appendix A figures for this discussion, note that in 

plot 21903 there is I. opaca (with shiny, smooth, thick, lustrous evergreen leaves), V. 

corymbosum (highbush blueberry; with pale green, thin leaves, matte surface), and M. 

cerifera (bayberry; with shiny, dimpled, lustrous leaves). The fairly prominent EAARL 

subcanopy peak is centered at 2.50m above ground and this is approximately equivalent 

to a concentration of V. corymbosum. V. corymbosum gives way to a mix with the other 

two subcanopy species at about 3.5m above ground. MMH-tree at this plot is 9.65m. 

Alternately, the field survey at plot 28506 shows there is clearly a dual layer canopy with 

large, tall trees and a M. cerifera layer that covers 45% of the plot area. This is not 

reflected in the unimodal EAARL waveform.  

 It would seem from these cases that the shiny leaves are reflecting in a specular 

nature (i.e., away from the lidar telescope) while the matte leaves are more directionally 
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diffuse (Grant et al. 1993) allowing for telescope capture. Again, the dominant canopy 

layer is very large in the M. cerifera plot and average to small in the V. corymbosum plot. 

But as to what is most limiting to EAARL canopy proportional reflection and 3-D 

coverage – species in the subcanopy or tree heights and biomass – will need more study. 

Perhaps until mechanisms are identified, exercises like the PCA above will need to be 

stratified by dominant species and sizes. 

 

4.5.6. Ecohydrological relationships and monitoring 

 Lidar is becoming a common tool in geomorphic and land cover descriptions, but 

regular interval vegetation monitoring applications have thus far been generally restricted 

to stand-level growth (Omasa et al. 2007). There are publications of potential and 

recommended directions in biophysical system monitoring (E.g., lacunarity analysis with 

PCA in Frazer et al., 2005), while detailed schemes of description and monitoring of 

environmental stress effect with lidar waveform products and field verification do not 

appear to be represented in the literature.  

 A remote sensing monitoring relationship can now be developed (Figure 18 is a 

conceptual model for the plan) that utilizes changes in above-ground vegetation structure 

and linked changes in water tables and soil moisture. Implementation of these broad 

guidelines will allow for the prediction of ecosystem-wide water relations disruption as 

may be expected of forcing by sea level rise. The barrier island systems in this study are 

ideal test sites for such a program owing to their generally simplified physical structure. 

 The foundation of the scheme is the modeling of PAI with the EAARL waveform 

metric CRR (conclusions are limited to P. taeda stands as it is likely that the PAI-CRR 
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correspondence will change in stands of conically-shaped trees and broadleaf trees). CRR 

successfully predicts PAI at AINS (r2=0.73, p<0.0001; Fig 10). The mechanism of 

interest reflected in change of these values is near-term alteration of moisture availability 

and concomitant adjustment in fine forest structure (see Chapter 3). Ground-truthing can 

be minimally labor and time-intensive, a significant advantage as the time frame is 

accelerated by anthropogenic influence on atmospheric greenhouse gas content. 

Collection of PAI with the Li-Cor LAI-2000 requires strict adherence to instructions, and 

while it would be labor-intensive to derive the true physiologically-active all-sided LAI, 

the raw PAI value is found to incorporate LAI to an adequate degree at AINS. General 

leaf and fine shoot biomass change was detected in serial PAI readings over the seasonal 

“green-up” and abscission periods (Fig. 9).  

 It is difficult to divide the PAI courses into absolute gain and loss of true leaf area 

because of the shifting sample time periods and the omission of intensive analysis of 

living tissue (E.g., specific leaf areas (SLA), from which a surface area estimate of the 

litter could be made, are unknown for this habitat). An exercise to relate PAI change as 

seen in Figure 9 with changes in litterfall, and derive a functional correlation was 

inconclusive with an rs of -0.40 in large stature stands, and +0.62 (more significant at 

p=0.10) in small stature stands (Chapter 3). Correlation in the smaller stands was likely 

positive as a result of green-up and the attendant shedding of old foliage. The divergence 

of the two stand types in correlation and significance in this test could be a result of a 

variety of conditions including: variable water relations and soil moistures; foliar/woody 

material proportions and arrangement; and inherent limitations of the LAI-2000. See also 
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that CRR predicts PAI with variable reliability among types (Fig. 10), with the smaller 

bio-type 2 more confidently modeled. 

 For these reasons, a dynamic causal relationship of PAI/LAI course with changes 

in plot water levels (DWT) is not attained at this time. It is possible, however, to draw 

general conclusions from average DWT and average PAI values (Chapter 3) during 

common periods. Though the correlation of DWT and PAI is best when readings are 

grouped across all sites (rs=0.46 and p=0.133, Chapter 3) than in the separate stand 

groups, the difference in direction (rs=0.46, p=0.179 in bio-type 1; rs= -0.37, p=0.239 in 

bio-type 2) resulting between the groups may be due to differing water uptake strategies 

by developmental control and/or rooting zone constraints (Chapter 3).  

 Utilizing a site soil’s STI profile in tandem with the fluctuating DWT enhances 

the general description of moisture status as this incorporates a water-holding element. 

As seen in Chapter 3, STI had better individual correlations than DWT with the canopy 

tree-based coarse structural measures and PAI. Figure 17 is a basic model of the STI, 

DWT and water availability interactions. If STI is greater at a more shallow DWT in the 

soil column, water table rise may increase water availability at the average DWT, and 

conversely, at a lower STI, water availability may decrease. In the majority of soil 

column profiles at AINS, STI increases with depth from surface; forests at these sites 

could be expected to adjust foliage levels downward and hence, overall growth through 

time, as more of the rooting system is forced to reside in the low matric potential coarse 

sand.  
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Figure 17. Diagram of water availability scale in an idealized 
Assateague Island soil column. Arrows indicate direction of 
increase. In the top right half, STI increases downward through the 
profile, and water table rise will result in lower water availability. 
In the bottom left half, STI is increases upward through the profile 
so that water table rise will lead to greater water availability. 

 

  

 The sensitivity of the LAI-2000 to leaf biomass change as demonstrated 

qualitatively here and quantitatively in other studies (see Holst et al. 2004, and Chason et 

al. 1991), and the expectation that the maximum supportable foliage and fine shoot 

biomass will adjust with available site moisture over short to long terms – especially in P. 

taeda, a well-studied species in moisture-dependence – support the continued study for a 

material equivalency in the PAI-LAI and moisture status feedback circuit.  

 Chapter 3 of this volume is concerned with the connectivity of the AINS upland 

water tables and sea levels. While more complicated than a 1:1 influence by the sea 

surface, it is reasonable to assume that continued fine temporal scale measurements of 

freshwater tables and sea level will allow for forcing functions on a site-by-site basis. 

Continued PAI collections over expanded areas and times and more detailed moisture 

measures will help resolve the interactions further to better model effects of rising water 
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tables on fine scale vegetation structure. It is likely that, as covered in the 

dendrochronological analyses (Chapters 2 and 3), and the litterfall study (Chapter 2), 

description of the previous year’s climate and depths to water tables will better predict 

current-year foliage levels. This would very much improve the probability to create 

accurate productivity models based on water availability. 

  The field PAI and remote CRR relationship may be tightened further with 

application of a variant of the Lefsky et al. (1999a) cover correction method in which 

they applied an empirical 2:1 ratio to the reflectance in the 1064nm wavelength of ground 

to canopy material. This effectively weighted all canopy cover estimates and allowed 

them to build incremental canopy height profiles (cover by vertical increment). A 

spectrometer could be acquired and green 532nm wavelength reflectance measured from 

representative canopy species and sands at AINS sites. This operation could make CRR 

more accurate, and perhaps correct the within-canopy differentiation of layers.  

 In the interim, it is quite useful that CRR is retained in the significant multiple 

regression predictions (Figure 8) of vol (R2=0.95), MMH of trees (R2=0.86), and MMH 

of all woody stems (R2=0.84). These integrative parameters are all field-verified and may 

be more sensitive to moisture status than the one-dimensional plot MCH that is less 

confidently predicted by EAARL. A correlation test, not shown, does indeed result in 

stronger and more significant positive correlations for the integrative metrics with STI. 

Other uses of the data and new inferential methods should be explored such as 

applicability to variously-scaled transpiration and production models. Figure 18 is the 

conceptual model for the monitoring of changing above ground structure for detection 

and prediction of effects of rising water tables in AINS uplands. 



 

 

181

Sea level

Freshwater lens table height

Increased rate of geomorphic change 
with increased storminess, increased 

washover

Prediction of effects of sea level rise 
must account for expected 

geomorphology

Freshwater lens morphology

Lens growth and depletion on a localized scale

Loss or growth of woodland habitat

Change in “soil moisture availability” over longer term

Effect of impeding 
layers of old peat

Regulation of plant surface area via change in the 
Plant Area Index (PAI)

Change in the structural and species development 
patterns and maximum maintained biomass

Inundation and death; or increased soil moisture 
availability leading to greater PAI in short term

Altered succession; overall reduced island 
stabilization (high elevation surfaces unlikely to 

colonize at necessary rate); reduced island 
subaerial area.

Sensed 
via CRR 

in EAARL
lidar

Soil texture*

 
 
Figure 18. Conceptual model of the Mid-Atlantic barrier island sea-level and above-ground forest structure 
relationship. EAARL lidar would be employed at regular intervals to provide fine resolution CRR changes 
with quantified water level changes and ground-verified structural changes. Ground verification could be 
suspended after regression relationships of the structure-moisture interaction reach significant levels. 
Further remote monitoring would provide predictions of decline thresholds due to sea level rise. The figure 
is developed based on recommendations in Fancy et al. (2009) “Monitoring the Condition of Natural 
Resources in US National Parks.” 
 

4.6. Conclusions 

 

 Results outlined in this study demonstrate the capabilities of the small-footprint 

full-waveform lidar system, EAARL, in capturing fine-scale (0.08ha plots) structural 

variation across environmental gradients. EAARL data offer a significant advancement in 

the temporal analysis of system-wide biophysical change with ecohydrological and 

ecophysiological change associated with sea level rise. With continued work, it is clear 
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that EAARL will allow for powerful modeling and validation exercises for many areas of 

management and research. 

 The use of lidar-specific ground measures such as height of peak canopy density 

(HPCD) may be critical in continuing applications as there is at the moment no efficient 

way to correct for loss of canopy top information. EAARL HPCD predicts the field 

HPCD parameter better than EAARL maximum canopy height (MCH) predicts field 

MCH; however, MCH is still a more reliable site quality indicator (see Chapter 3). These 

results advocate for standardizing the field collection of crown length in lidar validations. 

HPCD is derived from plot-integrated crown lengths, which in turn allow for generalized 

plot-level vertical density frequency spectrums. These spectrums become raw input for an 

experimental principal components analysis (PCA). Canopy density PCA is a promising 

new direction for many if not most lidars in comparisons with ground structure, a 

posteriori structural grouping, and in survey reproducibility among various lidars. Study-

specific adjustment of the arbitrary segmentation of canopy information (presence 

frequency in the field, backscatter returns in the lidar data), currently at 1m, may lead to 

better overall agreement. 

 Occlusion of the lidar signal will require greater attention in future applications. 

Unquantified reduction of incident and backscattered energy in the subcanopy surfaces 

leads to greater overall error rate and unpredictability. Some layers are underrepresented 

and the structure-dependent HPCD is, on average, in error by about 14% at a standard 

deviation (s) rate of 19%. This may also indicate the limitations of the field collection 

method here and a need for more detailed field measures of canopy distribution. 
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Collection of crown widths in addition to length would likely enhance relatability of 

metrics to site factors and may help parameterize an occlusion factor. 

 In addition to standard reproduction of ground structure, a major intent of this 

study is to demonstrate EAARL utility in the reproduction of physiologically significant 

biotic factors indicative of general ecohydrological conditions. Plant area index (PAI), 

the finest scale resolved in structure here, trends with leaf area changes related to season 

and, likely, water availability (at various temporal lags). The repeated ground 

measurement with a standard instrument (Li-Cor Biosciences Plant Canopy Analyzer, 

LAI-2000) can be reliably modeled with EAARL waveform information in the canopy 

reflection ratio (CRR).  

 Depth to water table (DWT) alone does not appear to be adequate in 

characterizing a water availability gradient influencing structural parameters. In 

combination with the soil texture index (STI), however, a new basic function for 

prediction and modeling is described that requires minimal ground truthing. STI, as a 

surrogate for more intensive soil moisture characteristics, is essential to the understanding 

of results thus far, and to predictions of effects to barrier island forests of changing water 

tables (see Chapter 3). Good correlation of the STI•DWT product (DWST) with PAI (up 

to rs=0.54, p=0.004) and a simple model of changing water availability with intersection 

gradients of water table and texture is recommended as a monitoring framework.  

 Water availability to P. taeda-dominated forests will change depending on the 

direction of the STI gradient (assuming a unidirectional rise in water tables with sea 

level). With water table rise, EAARL CRR (and PAI) can be expected to trend upward in 

those areas where STI increases upward through soil, and CRR will likely trend 
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downward in those areas where STI decreases upward through the soil profile (the 

majority of sites). An STI profile may be the only plot environmental parameter needed 

to interpret CRR changes if reliable sea level forcing functions are developed for AINS 

and/or appropriate island-wide error is assumed for a uniform forcing. 

 As seen in Chapter 3, the shrub component represented by SCA is significantly 

dependant on water table levels. Analyses should proceed to correct canopy occlusion 

and derive a suitable measure of shrub presence from EAARL waveforms. It appears this 

would greatly increase the inferential power of the lidar data in monitoring vegetation 

change due to sea level rise.  

 Basic monitoring of fine-scale ecophysiological indicators like PAI/CRR, the use 

of new techniques like the principal components analysis (PCA) drafted here, and 

detailed modeling and testing to further refine the structure-hydrological change 

relationship should continue at these barrier islands in assessment of threats from sea-

level rise. Another field season collection to include tree-level physiological 

measurement like sap-flow may allow for the allocation of causal activity to plant/leaf 

area change performed here in a correlative fashion. At a minimum, water tables should 

be recorded throughout an initial year, and these correlated to total leaf areas of the 

following year as these have been shown to be directly related (Hennessey et al. 1992). 
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V. Summary 

 

 The ecohydrological evidence presented in this dissertation supports the paradigm 

of depth to water table and the associated rooting zone dynamics as an overarching 

vegetation structuring agent on the sandy barrier islands of the Mid-Atlantic coast. Study 

of the current spatial gradients in biophysical structure and site water has formed the 

basis of forest development theories within a sea level rise scenario.  

 With common forest structure and site mensuration, and small circular plots of the 

design, the 26 plot study area of AINS appears to yield robust biophysical and 

environmental classifications. For example, the simplified soil matric potential 

description in STI introduces a widely applicable index that delineates sites by growth 

potential. STI is key to describing simple field water availability in combination with 

average water table depth. The new DWST variable holds significant potential in 

structuring a monitoring regime of sea level rise effects on barrier island upland forest 

structure.  

 Plant areal change over the season and across sites can reflect gradients in water 

availability. This, and the other supporting information developed throughout this 

volume, informs the generalized predictions that, with short term sea level rise: 

supportable leaf area (and hence, growth) can be expected to trend upward in those areas 

where STI increases upward through soil, and trend downward in those areas where STI 

decreases upward through the soil profile (the majority of sites). Shrub canopy area 

(SCA) is the most reliable structural variable in determining site hydrology. Increases in 

the shrub component relative to trees, and decreased forested area, can be expected with 

rising water tables.  
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 Results from an uncommon dendroecological technique show that radial growth 

increment trends are significantly different among forest types, and these can be 

extrapolated to predict future growth under environmental change. By developing 

individual site type radial growth and climate correlations, it is evident that on the limited 

spatial scale of a barrier, site can determine the effects of common climate signals on 

yearly growth.  

 The importance of collecting crown length data with tree heights in studies of 

ecohydrology and remote sensing has been clearly demonstrated with the successful 

applications here of the new HPCD (height of peak canopy density) variable. Derived 

from crown length measures integrated at the plot level, HPCD is useful as an alternative 

to maximum canopy height, a parameter often underestimated by lidar. HPCD also may 

better indicate average site moisture availability. 

 EAARL lidar is shown to hold significant potential in monitoring structural 

changes related to the hydrology of sites on a large scale. The relationship of PAI to field 

moisture is evolving as seen throughout this work, but it is clear that EAARL CRR 

captures PAI variation to a predictive degree. PCA of metered canopy presence 

frequency in plot aerial space appears sensitive to structural gradients related to site 

moisture; PCA of this type may also allow for a new standard method of structural 

comparison between field and remote data sets. 

 The synthesized results and interpretations of this study are designed to be of 

immediate reference to managers of natural areas, like the National Park Service, that are 

tasked with determining “vital signs” of ecosystem health and monitoring systems for 

change expression of these signs. Lidar surveys that are performed regularly to monitor 
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coastline geomorphology (Stevens et al. 2005) could be expanded to track vegetation. As 

suggested in this dissertation, disruptions to water relations of coastal vegetation with 

forcing by higher sea levels and increased or intensifying storm surges, may be detected 

in incremental and community-level structural changes. As relationships between 

important variables like PAI and DWST are tightened, there is also significant potential 

to create precise, fine-scale models of growth with average water levels. 
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Appendix A. Canopy profiles 

 
 

 The figures here include (from left): the EAARL waveform diagrams, the canopy 

presence frequency by height increment histograms, and the stem profiles. The waveform 

is a graph of return energy (backscatter count) by 50 cm height increment. The plot 

crown presence frequency estimates foliage density by counting individual presence in 

the crown length range at 10 cm increments. Stem profiles represent individual presence 

data graphically with the shaded portion of each column.. Crown ratios are derived from 

these stem profile data directly as: 

 

crown ratio =
crown length

total tree height  
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Appendix B. Crown lengths 

 

Crown length measurement issue 

 I am unsure of the degree to which crown lengths may be overestimated in some 

plots. There is a chance that prior to about mid-August 2005 in data collections, 

secondary crown lengths (isolated foliated branches removed down the bole from the 

main crown) were accepted erroneously as ends of continuous crown. This would have 

the effect of overestimating the crown presence frequencies in the canopy segments 

concerned. Of the 14 plots possibly affected by the omission, 29202 and 29504 

(relatively low density stands of uneven age structure) are most likely to be significantly 

affected. 

 Plot 21901 (Fig. 1) serves as an example of a “worst-case-scenario”: of 41 total 

stems, crown lengths of 11 (27% of stock) were noted in the original field data as 

‘secondary’. In other plots where the discrepancy has been identified, affected stock 

percentage is in the single digits. This plot is of rather high relief (1.7m range) and high 

average elevation (1.4m), with an open habit, and several very large trees.  

 Frequencies along the length from 3.5m above ground level (AGL) to 12.7m AGL 

are changed by reducing crown presence by one-third from previous lengths of affected 

individuals. This reduction level is a best guess from memory. The result of about a 

13.5m height of peak canopy density (HPCD) is unchanged. The recalculation does affect 

subcanopy representation, or that portion of canopy below the tallest point of unfoliated 

bole.  
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Figure 1. A comparison of the two results from separate crown length data sets for AINS plot 21901. 
21901a graphs the current, uncorrected crown lengths, incorporating the length fractions from ends of 
main crowns to ‘secondary’ ends of crown. Upwardly adjusting the terminating crown length by a 
hypothetical 33% for the flagged individuals (11 trees) results in the histogram of 21901b. 

 

  It is also important to note that each methodology is an approximation of 

true crown presence in aerial space. The high relief of the area reduces accuracy because 

tree bases are not measured for elevation.    

 

Bimodality test 

 I experimented with producing the ‘bimodality coefficient’ (SAS Institute, Inc. 

2002-2003) based on skewness and kurtosis of the tree canopy frequency distributions. 

This variable did correlate significantly with most of the base structural metrics, yet not 

to as high a degree as HPCD. It seems likely that inclusion of shrub crown lengths (not 

measured) in the computations here would improve results because of the 

interdependence of the tree and shrub growth in, for example, evapotranspirational 

function (see Chapter 3). 
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Appendix C. PAI “fluctuation” 

 

 As an estimate of relative leaf area index (LAI), the LAI2000 (Li-Cor, Lincoln, 

NE) PAI metric does not differentiate woody and leaf area. It seems that one could verify 

and roughly depict a material loss of foliage by measuring PAI throughout the growing 

season. The fluctuation variable (the ratio of PAI range to average PAI) may be an 

acceptable index to assess approximate foliar change with certain environmental cues – 

especially groundwater levels – in appropriate time periods. 

 

PAI distribution 

 Figure 1 shows the 2005 PAI distribution for bio-types based on the range as a 

proportion of average PAI. This statistic of annual fluctuation is approximately twice the 

coefficient of variation (CV) and may approximate the areal contribution by an annual 

cohort of foliage. As this statistic recedes from 50%, the proportion of woody area to leaf 

area increases. The bio-type averages accompanying the information in Figure 1 are 

listed in Table 1. Stand biophysical metrics are included to illustrate directions of 

correlation of leaf area to stand stature and biomass levels. 
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Figure 1. The 2005 average PAI (■) and the range in PAI 
(■) of 2005 for the bio-types 1a-3, where 3 is the outlier 
group. 

 
 

1a 1b 2a 2b
2005 Annual PAI fluctuation (%) 49.07 52.30 37.40 32.32

Standard Deviation (s) 23.74 23.01 16.73 20.37
n 8 4 4 3

Maximum Canopy Ht. 16.65 23.37 9.78 11.83
Basal Area 34.68 37.99 20.30 26.86

Bio-type

 
 
Table 1. Total PAI fluctuation (PAI range:average PAI) in the 2005 field 
collections for the bio-types (less outlier type 3) varies directly with stand 
stature (represented by height and basal area here) in type 1, and varies 
negatively in type 2. 
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 Litterfall rate is often found directly correlated to measures of stand stature (see 

Gresham 1982, Hennessey et al. 1992). This occurs in our large stature bio-type 1 only, 

not bio-type 2. Crown ratio is anomalously higher in type 2a perhaps explaining the 

inverse relationship of PAI change to stand magnitude found between types 2a and 2b. 

Environmental variability could dominate the PAI changes in these small stature, lower 

quality sites. Low site index (SI), a general site quality assessment usually based on 

vertical growth potential (Spurr and Barnes 1980) is associated with greater variability in 

growth than in high site index (Johnson and Young 1992) as seen in the 

dendrochronology results. 

 A correlation test of fluctuation with informal litter totals for 6 littertrap-equipped 

plots shows no immediate relationship. The variation in the fluctuation statistic across 

bio-types is only significant across the 2 major bio-types (1 and 2) and derives no 

variation from site types.  

 It appears that finer temporal representation of PAI may be required. A Spring to 

Winter field season of intensive measurement at a few sites on AINS should aid in 

deriving a reliable fractional PAI related to true leaf area change. 
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