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Juncus roemerianus, black needlerush, is common in high marshes and occasionally in 

low marshes along the Mid-Atlantic and southern USA. Previous work found that J. 

roemerianus patches remained relatively stable in the absence of disturbance and under normal 

variations in flooding across a marsh. Disturbance will occur from storms through wrack (dead 

plant material) deposition and promote plant community shifts to reduce J. roemerianus patch 

size. I hypothesized that horizontal movement of J. roemerianus patch borders varies among 

hydrogeomorphic locations related to differences among those sites. A summary of the 

relationships between patch border dynamics, the condition of J. roemerianus, bordering 

communities, and environmental factors is shown in a conceptual model. The borders of patches 

of J. roemerianus within different areas of a salt marsh were tracked at Upper Philips Creek 

(UPC). UPC is located on the Delmarva Peninsula and is part of the Virginia Coast Reserve 

Long-Term Ecological Research (LTER) site. In 1990, eight 3 x 8 m permanent plots, which 

contained the interface between J. roemerianus and other species, were established throughout 

the UPC marsh. Two hundred squares within 1 x 2 m quadrats within the plots were assessed for 

ground cover. Every year from 1990 to 2014 ground cover was identified visually and non-

destructively. Differences in horizontal movement of Juncus patch border were found among 



 

 

geomorphic locations within the marsh. Expansion occurred at high marsh locations both away 

from and near a creek with rapid rates of horizontal movement of Juncus outwards. Little to no 

expansion was observed at one low marsh site and a high marsh site bordering a hollow with 

slow rates of horizontal movement of Juncus outwards. Wrack reduced patch size at one low 

marsh site in 1994 without full recovery by 2014. This study helps better understand the 

geomorphic setting and context for this plant and helps track community structure and 

environmental factors associated with patches of J. roemerianus within the salt marsh. This is the 

first time that rates of horizontal movement of Juncus and community changes have been 

assessed in this way. It also helps in understanding ecosystem state changes associated with the 

long-term effect of sea-level rise versus wrack disturbance. 
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INTRODUCTION 

Salt marshes have been the subject of ecological studies for many years [Adams, 1963; 

Rublee and Dornseif, 1978; Eleuterius and Eleuterius, 1979; Oertel, et al., 1989]. Important 

aspects of their ecology are the many interactions among plant species (Bertness and Ellison 

1987) and ecological responses to pronounced changes in environmental conditions (Tylianakis 

et al. 2008; Harmon et al. 2009; Harley 2011). Salt marshes provide the type of system that 

allows plants to be studied under gradients of environmental conditions. These coastal wetlands 

are transition zones between the aquatic and terrestrial worlds (Niering, 1985).  

Salt marshes are on protected shorelines and edges of estuaries throughout the world. 

Many salt marshes are along the east coast of the United States and along the Gulf of Mexico. 

On the west coast there are fewer. Most of the salt marshes in the United States lie between New 

Jersey and northern Florida, particularly in the Carolinas and Georgia (Weis and Butler, 2009). 

In 2009, there were roughly 110.1 million acres (4.456 x 107 hectares) of wetlands in the 

conterminous USA. Of all US wetlands in 2009, around 95 % were freshwater and 5 percent 

marine or estuarine (saltwater). Approximately 66.7 % of the saltwater wetlands consisted of salt 

marshes (Dahl, 2011). 

Important aspects to study within salt marshes are the rates and causes of community 

changes. The movement of boundaries between patches of Juncus roemerianus Scheele and 

other types of saltmarsh species has been observed (Eleuterius, 1984; Brinson and Christian, 

1999). J. roemerianus is a commonly found saltmarsh plant known as the black needlerush. 

Eleuterius (1976, 1984) estimated the distribution of J. roemerianus and found the following. It 

was native along the coast from Maryland to Florida and westward to Texas. In the south 

Atlantic states J. roemerianus dominated 20.7% of marshes, and on the Gulf coast J. 
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roemerianus dominated 7.3% of the marshes; however, it covered more marsh area on the Gulf 

than the Atlantic. In all of North America, the black needlerush dominated approximately 

320,000 hectares of salt marsh. Current estimates are similar (Skaradek, 2007; Skaradek and 

Henson, 2007; Eleuterius, 1976; Eleuterius, 1984). 

This graminoid is a monocotyledon from the rush family Juncaceae. It is a course and 

rigid grass-like perennial that forms in clusters with leaves that are terete (i.e., stiff and strong). 

Flowers begin to form on J. roemerianus between the months of May and October, and the 

maturing of J. roemerianus seeds occurs from July to November. Black needlerush has wide 

tolerance for environmental conditions (Eleuterius, 1984; Woerner and Hackney, 1997). In low 

saline soils, J. roemerianus is productive with leaf height reaching over 2.2 m; however, in high 

salinity zones this plant is repeatedly less than 0.3 m tall. It can tolerate pH levels from 4-7, and 

it is found in infrequently flooded areas. This stress tolerator serves is a key structural component 

in marshes (Grime, 1979). During a given year, new leaves break through the soil surface and 

continue to grow, while dead shoots remain upright for extensive periods. Typically, this results 

in dense stands of J. roemerianus, high in biomass and distinct from the other vegetation 

(Williams & Murdoch, 1972; Eleuterius, 1975, Eleuterius and Caldwell, 1981; Christian et al., 

1990; Higinbotham et al., 2004). These leaves, both live and dead, accumulate densely and, 

without difficulty, can surpass 1000 leaves per m2. Only a small amount of light infiltrates the 

soils surface, and the “thicket” of J. roemerianus leaves offers a habitat for diverse saltmarsh 

animals (Stout, 1984; Skaradek, 2007; Skaradek and Henson, 2007).  

Brinson and Christian (1999) conducted a study over a period of six years on rates and 

causes of community changes within a salt marsh in Virginia, USA. They observed the boundary 

between patches of J. roemerianus and other types of saltmarsh species. The objective was to 
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determine how community changes happened over years and to determine if wrack deposits 

initiate boundary changes by being a source of disturbance. In their conclusion Brinson and 

Christian (1999) indicated that J. roemerianus patches seemed relatively stable. Some decreases 

in size were related to wrack disturbance at the site that had the most recurrent and deepest tidal 

flooding. The patch stability is owed in part to J. roemerianus’s extensive tolerance for a wide 

range of hydroperiod, meaning the time period and manner the salt marsh is covered by water. 

Lastly, there was a tendency for J. roemerianus to remain over a variety of geomorphic locations 

and to display losses where wrack disturbance and flooding interrelate. My thesis research is an 

extension and enhancement of the efforts of Brinson and Christian (1999). This project was 

conducted at Upper Phillips Creek (UPC) in Virginia every year from 1990 to 2014. To my 

knowledge, no one has ever examined the horizontal movement of Juncus as thoroughly. 

Conceptual Model 

In the study by Brinson and Christian (1999), J. roemerianus patch border position 

seemed relatively stable over a variety of geomorphically different sites. Patch border retreated 

where wrack disturbance and more frequent flooding were interrelated. Based on extended 

information I hypothesized that changes in J. roemerianus patch size varies among 

hydrogeomorphic locations related to differences among those sites. A summary of the 

relationships between patch border dynamics, the condition of J. roemerianus, bordering 

communities, and environmental factors is shown in my conceptual model (Figure 1). Patch 

border dynamics involve the interaction among J. roemerianus, its bordering communities, and 

environmental factors. The environmental conditions directly include hydroperiod, salinity, 

wrack, and soil organic matter. Disturbance from storms through wrack (dead plant material) 

deposition promotes rapid plant community shifts away from J. roemerianus. Lastly, the 
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conceptual model shows that the environmental drivers: precipitation patterns, tidal flooding, 

elevation, and storminess all contribute to the aforementioned environmental conditions, as well 

as the condition of J. roemerianus and the bordering communities. Indirectly these 

environmental conditions and drivers contribute to patch border dynamics and the differences 

among locations in horizontal movement of the border. 

 

 

 

 
Figure 1: A conceptual model related to hydrogeomorphology was made to show how different 

environmental factors relate to the horizontal movement of J. roemerianus patch borders. 
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Research Objectives 

The following objectives were tailored to the hypotheses and conceptual model. 

1. To assess differences in the following aspects among four locations with different 

hydrogeomorphologies within a salt marsh: 

A. horizontal movement of Juncus 

B. conditions of Juncus (biomass, density and height),  

C. condition of bordering communities (type and biomass), 

D. environmental conditions (hydroperiod, salinity, wrack, and soil organic matter), 

E. environmental drivers (precipitation patterns, tidal flooding, elevation, and 

storminess) 

 

2. To assess how measured factors explain the differences in horizontal movement of 

Juncus among the four hydrogeomorphic locations. 

 

 

 

 

 

 



 

 

LITERATURE REVIEW 

 

The following literature review was structured to reflect my conceptual model. First, the 

general structure of salt marshes is discussed, followed by the dominant plant species found 

within different regions of a salt marsh. Second, general information is discussed on various 

spatial patterns within salt marshes related to conceptual/ecosystem state change models similar 

to mine. Also, discussed within this section are environmental conditions that can change the 

landscape of marshes, specifically related to J. roemerianus. The third section discusses the 

biology and ecology of J. roemerianus. Fourth, disturbance and stress is discussed along with 

relevant environmental conditions (hydroperiod, salinity, wrack, and soil organic matter) and 

environmental drivers (precipitation patterns, tidal flooding, elevation, and storminess). For the 

purpose of my study storminess will refer to the occurrence of storms (nor’easter or hurricanes), 

the amount rainfall, wind, high tide conditions, and how frequently wrack is moving. 

Generalities about each aspect regarding the nature of the marsh will be given in each section, 

followed by studies relevant to J. roemerianus. 

Salt Marshes 

Salt marshes often can be divided into high marsh and low marsh. The high marsh is 

located at higher elevations, or the upper border of a salt marsh, and tends to have salinity levels 

resulting from multiple processes such as tidal flooding, rain, ground water, evaporation, and 

transpiration. However, salinity levels can depend on location; for example, in the southern 

marshes, salinity can be high (Nestler, 1977) because of relatively high evapotranspiration. 

These high marshes get flooded only occasionally by spring tides (Nestler, 1977; Weis and 

Butler, 2009) and can survive the high rates of sea-level rise if there is sufficient mineral 

deposition and organic soil formation (Day et al., 2008). The low marsh is at the lower elevations 
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in a salt marsh with soil salinity levels closer to those found in tidal waters. These plants are 

often submerged by most, if not all, high tides (Weis and Butler, 2009) making flooding quite 

frequent (Wiegert and Freeman, 1990). 

J. roemerianus and Spartina alterniflora Loisel make up the majority of plant biomass in 

tidal salt marshes along the mid-Atlantic coast, Gulf coast, and south-east coast of the US 

(Eleuterius, 1976a; Stout, 1984; Wiegert and Freeman, 1990). Salt marshes may consist of a 

variety of different plants in addition to J. roemerianus and S. alterniflora. Other plants that are 

common in these temperate regions along the east coast of the United States are Distichlis 

spicata (Loisel) Greene and Spartina patens (Aiton) Muhl (Weis and Butler, 2009). Some 

studies conducted in south-eastern US marshes have found that S. alterniflora tends to dominate 

the low marsh elevations with salty soil environments (Weis and Butler, 2009; Wiegert and 

Freeman, 1990), but S. patens, J. roemerianus, and Salicornia spp. can still be found (Weis and 

Butler, 2009). J. roemerianus is most commonly found in south-eastern, Gulf and mid-Atlantic 

US marshes at higher elevations with less flooding and in environments where the soil is less 

salty (Weis and Butler, 2009; Wiegert and Freeman, 1990). 

Conceptual/Ecosystem state change models related to spatial patterns within a marsh 

Christian et al. (2000) extended the efforts by Brinson et al. (1995) by developing a 

conceptual model related to mine, in that they focused on changes in the salt marsh relative to 

sea-level rise and disturbances. They examined geomorphic categorizations for wetlands 

controlled by sea-level using a spatial scale suitable for restoration. The scale includes an 

ecosystem state change model (extended from Hayden et al., 1995), which defines the 

mechanisms of converting from one coastal ecosystem state to another. Also, included in 

Christian et al. (2000) is a state change continuum for coastal wetlands.  
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Brinson et al. (1995) postulated changes in ecosystem state, for coastal mainland marshes 

at the Virginia Coast Reserve, during the transition from terrestrial forest to shallow estuarine 

locations. Categories of ecosystem states are based on dominating plants in a community and soil 

and sediment characteristics. Changes among five states were defined from the viewpoint of a 

fixed forest site experiencing transition from one ecosystem state to another, with rising sea level 

being the leading force of overall change. It was postulated that all five states had self-

maintaining properties and were therefore resilient to some variations in sea-level rise. On the 

other hand, transitions amid states were aided by disturbance or exposure to severe stress. For 

alteration to take place, it was necessary for resistance to be overcome by actions that were more 

sudden than sea level increasing. The potential disturbances include erosion and wrack 

deposition, and stresses such as high salinity, flooding, and accumulation of plant toxins. Events 

like these enable replacement of plant species and sediment condition modifications. The 

processes accountable for triggering a state to cross a threshold are distinct for each form of 

transition. 

Condition of J. roemerianus 

J. roemerianus, also known as black needle-rush (Eleuterius, 1976), black grass, and 

Roemers rush (Skaradek and Henson, 2007; Skaradek, 2007), is adapted to many environmental 

conditions (Eleuterius, 1984; Woerner and Hackney, 1997; Skaradek and Henson, 2007). This 

saltmarsh plant inhabits the edge of ditches and shorelines of bays and streams of tidal systems. 

It occupies soils stretching from practically pure sand to a blend of loam and clay. J. 

roemerianus also cultivates soils rich in organics, like peat. This rush is frequently established in 

constructed marshes, which are used for the treatment of dilute organic wastes. It has a high 

tolerance to anaerobic environments and to calcium carbonate (Skaradek and Henson, 2007). 
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Thick patches of J. roemerianus form profound fibrous root systems, making them really 

good at protecting shorelines, sieving suspended solids, taking up nutrients, and facilitating 

substrate oxidation. The species can endure a wide range of salinity, so it is sometimes used in 

restoration of tidal estuaries throughout the Atlantic and the Gulf coastlines. As salinity in the 

water of a salt marsh decreases, the amount of other plant species in association with J. 

roemerianus usually rises; however, it’s understood that species of Spartina are more forbearing 

of salinity and inundation (Skaradek and Henson, 2007). Also, many species such as muskrats, 

waterfowl, marsh rabbit, nutria, rice rat, and non-game birds consume this saltmarsh plants’ 

seeds and vegetative parts (Skaradek and Henson, 2007; Skaradek, 2007). 

In Christian et al (1990), J. roemerianus dominated an ample area of an irregularly 

waterlogged salt marsh at the Cedar Island National Wildlife Refuge, North Carolina, USA. 

Along a 1.6 km transect into the marsh, they observed aspects of growth, senescence, and 

decomposition. The study was over salinity and hydroperiod gradients that passed over 3 diverse 

vegetational regions. From the edge of the marsh towards the interior, a gradual decrease was 

seen in hydroperiod and salinity (Brinson et al., 1991). “The lack of response to gradients in 

hydroperiod and salinity is indicative of the broad range of environmental conditions to which J. 

roemerianus is adapted.” (Brinson, 1991). There was an average of 812 g of dry mass m-2 for 

aerial, yearly net primary production of J. roemerianus. This is a similar rate to that of J. 

roemerianus in additional NC marshes. Ecosystem changes within the marsh dealing with 

salinity and hydroperiod occurred from the edge towards the inner regions of the marsh. J. 

roemerianus lack of dominance in the innermost area could have been a result of competitive 

advantages of different species in an environment of lesser salinity and shorter hydroperiod. 

Standing dead leaves had a slow rate of decomposition. Assuming this permanence and 
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perseverance of standing dead, biomass removal by physical processes such as storms and fire 

may be more important than decomposition. 

Disturbance and stress events related to environmental conditions and drivers 

This section will consist of a discussion about disturbance, stress, and some dieback 

events. Also included are environmental conditions (hydroperiod, salinity, wrack, and soil 

organic matter) as well as various environmental drivers (precipitation patters, tidal flooding, 

elevation, and storminess). Generalities about each aspect regarding the nature of the marsh will 

be given, as well as what is known about J. roemerianus for each section. 

Keusenkothen and Christian (2004) describe disturbance as “a stressor on an ecosystem 

that has the potential to modify a community and (1) is either short-term or (2) begins with a 

relatively abrupt change in condition.” On a broader scale, Odum et al. (1995) defines 

disturbance as an aspect of the environmental pulsing paradigm that affects many parts of the 

organization of ecosystems and its dynamics. The terms “press” and “pulse” were first used by 

Bender et al. (1994) to differentiate between two perturbations by examining how populations 

respond to disturbances. Glasby and Underwood (1996) define “perturbation” as a process in 

which an enormous disturbance event causes a reaction “in terms of altered densities or 

composition of species in a population or assemblage.” They use “pulse” as a short-term 

disturbance that produces an abrupt change in species abundance from which the group 

convalesces as soon as the disturbance comes to an end. Also, they define “press” as a 

continuous disturbance that causes perpetual change to the large quantity of species. 

Weather, biota, and human activity are three general categories that can all contribute to 

disturbance events within salt marshes. “The potential for the occurrence of each disturbance and 

the response are dependent on the ecogeomorphologic positions of the ecosystems 



 

11 

 

(Keusenkothen and Christian, 2004).” Fagherazzi et al. (2004) defined ecogeomorphology, from 

the terms ecology and geomorphology, as “the discipline that studies the coupled evolution of 

geomorphological and ecosystem structures.” This definition seems appropriate to my work at 

Upper Phillips Creek. Keusenkothen and Christian (2004) discuss ecogeomorphology with a 

perspective on ecosystem state changes related to sea-level rise. They also studied a localized 

disturbance, which included a case study of trampling deer. They focused on four different 

communities (J. roemerianus community, D. spicata/S. patens community, short S. alterniflora 

community, and Creek bank community) and two ecosystems states (organic high marsh and 

mineral low marsh) at Upper Phillips Creek marsh, emphasizing the significance of 

ecogeomorphology on the rate of recurrence and response to disturbance. Keusenkothen and 

Christian (2004) cited many studies within other ecosystems that show trampling by deer can 

reduce above-ground biomass of plants,  alter soil bulk density, organic content, and even 

elevation. The J. roemerianus community was considerably affected by trampling. Above-

ground biomass, and relative elevations showed a decrease. Significant amounts of D. spicata 

were found in the trampling areas, with significantly less amounts of J. roemerianus. Their 

results showed that “trampling may slow marsh surface accretion in high and low marsh 

ecosystem states in different ways due to differences in ecogeomorphology.” 

A number of scientists have studied the significance of physical disturbances within 

saltmarsh plant communities (Redfield, 1972; Reidenbaugh and Banta, 1980; Hartman et al., 

1983; Bertness and Ellison, 1987; Brinson et al., 1995; Valiela and Rietsma, 1995). Ecosystem 

state changes is often initiated by a disturbance in external controlling forces (Brinson et al. 

1995). He et al. (2013) applied the stress-gradient hypothesis (SGH) and studied whether or not 

an increase in environmental stress caused disturbances in species interactions among plant 
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communities within various ecosystems throughout the world. They referred to stress as any 

biotic, physical, or resource factor (light, water, and nutrients) that may cause a reduction in the 

fitness level of plants. The results of He et al. (2013) confirm how stress changes the 

relationships between plants in coastal marshes. These plants have to compete in order to survive 

by adapting to changes in stress, or the stress will cause a decrease in their ability to grow and 

reproduce. Understanding other environmental factors is important in regions with enduring tidal 

inundation, increased salinity, and insufficient nutrients that may be altering plant productivity 

(Shafer and Hackney, 1987). Various environmental conditions and environmental drivers, 

related to those in my conceptual model, have been studied to see how increases in these stresses 

and disturbances affect plant communities. 

Disturbances and stresses related to environmental conditions (hydroperiod, salinity, 

wrack, and soil organic matter) 

Saltmarsh plants respond to the stressors (or a press if referring to the definition from 

Glasby and Underwood (1996)) salinity (Parrondo et al., 1978; Hester et al., 1998; Katembe et 

al., 1998). Salinity can be good for plants, especially in a salt marsh; however, too much salt in 

the root zone of plants can have damaging effects on patches by negatively impacting their 

growth and causing stress. Also, if there is excess salt in the area of the roots then the plants will 

not be able to retrieve water from surrounding soils (http://waterquality.montana. 

edu/docs/methane/basics_highlight.shtml). 

It was revealed through transplant studies conducted via Eleuterius (1989) that J. 

roemerianus vegetation within high soil water salinity regions of a tidal marsh could be 

effectively relocated to regions of the marsh having lower salinity levels; however, inverse 

transplants would not occur successfully. His results showed evidence of “ecotypic 
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differentiation” in J. roemerianus, meaning the length of leaves was considerably diverse among 

the three populations studied.  These populations included mature short leaves in hypersaline 

areas, mature moderate length leaves in less saline areas, and the longest leaves in low salinity 

areas. Soil water salinity is what initiated this phenotypic plasticity of J. roemerianus and its 

genetic variation, indicating that in order to survive, adaptation and salt tolerance are extremely 

important (Eleuterius, 1989). 

Saltmarsh plants respond to disturbances that are sudden and unexpected; for example, 

storm-induced wrack deposition (Tolley and Christian, 1999; Valiela and Rietsma, 1995; Brewer 

et al., 1998). The initiation of wrack is a disturbance, but the long-term laying of the wrack is a 

stress (Glasby and Underwood 1996). In New England saltmarsh communities, as well as high 

marsh areas along the east coast of North America, most physical disturbances result from wrack 

(Reidenbaugh and Banta, 1980; Hartman et al., 1983; Bertness and Ellison, 1987). The majority 

of wrack is made up of dead S. alterniflora from preceding growing seasons. The dead plant 

debris gets moved by flooding, storms, and tides to higher elevations within the marsh 

(Reidenbaugh and Banta, 1980; Hartman et al., 1983; Bertness and Ellison, 1987). This wrack 

covers species long enough to cause mortality to the vegetation beneath it, often times leaving 

bare patches in its place (Reidenbaugh and Banta, 1980; Hartman et al., 1983; Bertness and 

Ellison, 1987). When a mosaic pattern is seen within plant communities, it may be explained by 

wrack disturbances (Brinson, 1991). Physical movement of wrack and resultant effects on 

localized seasonal production results in these spatial patterns (Reidenbaugh and Banta, 1980; 

Hartman et al., 1983).  

Studies related to disturbances from wrack and spatial patterns within salt marshes have 

been conducted. For example, Valiela and Rietsma (1995) calculated the disturbance of 
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saltmarsh vegetation as well as assessed the hypothesis that disturbance and species richness are 

connected. This was done by observing disruption in vegetation by 195 wrack mats that were 

isolated over Great Sippewissett Marsh. Highest and lowest species richness were in 

correspondence with highest and lowest disturbance rates. Also, Bertness and Ellison (1987) 

studied spatial patterns of saltmarsh plant communities as well as their edaphic factors within a 

New England salt marsh. They looked at disturbances caused by wrack and how it impacts the 

abundance of plants within a community. They hypothesized “that plant distributions correspond 

to their physiological tolerances” (Bertness and Ellison, 1987). They found that physical 

disturbance and interspecific competition interact with plant physiological tolerances to create 

the notable spatial patterns within the saltmarsh plant community. 

Impacts of wrack and flooding on two neighboring communities within a Virginia high 

salt marsh were observed in 1994 and 1995. This was done by manipulating inundation of tidal 

creek water and wrack existence independently and together. Inundation changes alone produced 

slight response in several categories of plant biomass (Tolley and Christian, 1999). In Tolley and 

Christian (1999), J. roemerianus, S. patens, and D. spicata were all affected by wrack deposition 

and expectedly displayed a substantial decrease in aboveground biomass. Also, Brinson and 

Christian (1999) stated there was a tendency for J. roemerianus to display losses where wrack 

disturbance and flooding interrelate. When covered by wrack, S. patens and J. roemerianus tend 

to die, and then S. alterniflora, D. spicata, (Brinson and Christian, 1999) and Salicornia 

europaea replace those high marsh species within tidal marshes because they are better 

colonizers (Bertness and Ellison, 1987). Salt marshes can transition into complete cover by S. 

alterniflora if the areas near a creek bank are exposed to deep flooding twice a day (Brinson et 
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al., 1995). It is also possible that the original mix of species will be reestablished by succession 

as long as elevation is not extremely altered (Bertness, 1991). 

Restoration after wrack deposition relies on the species (Tolley and Christian, 1999). In 

Tolley and Christian (1999), S. patens and D. spicata recovered from wrack deposition within 

one growing season; however, J. roemerianus did not. Since the wrack deposition effects 

considerably surpassed the experimentally increased inundation effects, the potential interactions 

between the two were masked. Amplified inundation could have inhibited the establishment of 

bare areas by certain species after the elimination of wrack from an area. The results of Tolley 

and Christian (1999) validated that deposition of wrack can be the reason for the redistribution of 

species among the high marsh community. Inundation changes possibly have a larger effect on 

the restoration of the plant community following deposition of wrack than it does devoid of 

wrack deposition.  

The structure and function of plant species within a salt marsh also collectively get 

influenced by disturbance, climate, and soil conditions (Thonicke et al., 2001). As coastal 

wetlands are eroding, they will experience local rises of organic and inorganic suspended 

sediments (Cahoon et al. 2009). Blum and Christian (2004) hypothesized that environmental 

conditions would change the landscape of the marsh and play an important role in transgression 

during sea-level rise in locations where sediment was limited. Specifically, at Upper Phillip’s 

Creek Marsh, they proposed that certain biological processes have an effect on marsh surface 

elevations within low (intermediate height S. alterniflora), mid (short S. alterniflora, D. spicata, 

and S. patens), and high marsh regions (J. roemerianus). The buildup of organic matter supports 

surface accretion, specifically in mid and high marsh zones, while the deposit of sediments 

supports vertical surface accretion in the low marsh zone. After studying the root production and 
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decomposition within the three different marsh zones, their hypothesis that “biological processes 

contribute to geomorphic changes that result in transgression” was supported. Their results state 

that differences in sediment accretion among three marsh zones, because of the buildup of 

organic matter, are associated with the proficiency of root production by plants and to the 

differences in how vulnerable the plant roots are to decomposition. “Root production was 

significantly different among the three zones and may be related to differences in plant type, 

growth form, or sediment pore water chemistry (Blum and Christian, 2004).” 

Disturbances and stresses related to environmental drivers (precipitation patterns, tidal 

flooding, elevation, and storminess) 

Environmental drivers both directly and indirectly affect marsh environmental factors, 

biota.  There is substantial amount of overlap in various environmental conditions: tidal flooding, 

salinity, and elevations (Eleuterius, 1989; Woerner and Hackney, 1997; Touchette, 2006). 

Following are studies associated with precipitation, flooding, elevations, and storms 

(disturbances or pulses (Odum et al., 1995)) with some aspects related to salinity.  Also 

discussed are these environmental drivers (factors that cause measureable changes) (Cahoon et 

al. 2009) more specifically related to J. roemerianus. 

In a study on a Cedar Island marsh, water level records and porewater salinity 

measurements were taken over two years. Flooding from the estuary, as well as precipitation and 

evapotranspiration are what regulate water table fluctuations. Precipitation can moderate the 

concentration of salinity in areas of the marsh where water depth is shallow, and summer months 

are shown to have higher evapotranspiration rates within the marsh (Brinson et al., 1991). During 

the growing season, in both Cedar Island and Virginia Coast Reserve (VCR) marshes, water 

levels are expected to be lower than the marsh surface because of evapotranspiration and 
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decreased frequency of flooding (Christian et al. 2000). During the winter months, marsh regions 

are waterlogged constantly by storm tides and precipitation. During this season the marsh is 

supplied with plenty of surface water, and evapotranspiration is low and does not successfully 

get rid of the water (Christian et al. 2000).  

Pennings et al. (2005) studied elevation differences among flooding, salinity, and 

competition by conducting field and laboratory experiments. Both flooding and salinity had an 

effect on the lower elevation limit of J. roemerianus, but competition did not. Results of this 

study propose that there is expected geographical variation among ecological interactions 

because of differences in the physical environment. For example, at lower elevations the stress 

from salinity most likely has a more essential role in determining plant spatial patterns.  

Touchette (2006) conducted work, similar to that of Eleuterius (1989), to determine how 

important ecological factors, such as soil-water salinity are in influencing spatial patterns in plant 

water relations within a J. roemerianus brackish marsh. Vegetation found alongside the shoreline 

of a marsh and plants found along the upper boundary of a marsh undergo different relationships 

with water, which likely contribute to differences perceived in aboveground biomass. The low 

marsh elevation zone experiences a very small amount of diluted saline waters, being the most 

saline. In the mid-marsh zone, tidal waters experience dilution of freshwater periodically. The 

upper marsh elevation zone, which is the least saline, is upheld predominantly by upland 

freshwaters. Low marsh plants had greater leaf abundance and aboveground biomass than did the 

mid and upper marsh zones (Touchette, 2006). 

Salt marshes respond to flooding beyond storm-induced wrack deposition.  Webb and 

Mendelssohn (1996) determined that dieback of vegetation within marsh plant communities was 

not only caused by an increase in salinity alone, but it was caused by increased submergence 
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predominantly in combination with increased salinity (Webb and Mendelssohn, 1996). There is 

also believed to be a strong seasonal component related to the hydrology of intermittently 

flooded marshes. This is related to changes in sea level, storm action, and temperature variations 

(Brinson et al., 1991). During the late fall to early spring, on a Cedar Island marsh, the highest 

extent of estuarine flooding is caused by storms with northeasterly winds (Brinson et al., 1991). 

During the winter and spring, strong winds can cause extreme flooding up to a one meter depth, 

which may last as long as three days (Brinson et al., 1991). 

Sea-level rise 

One purpose of my study is to help understand long-term effects of increased flooding 

from sea-level rise versus wrack deposition on Juncus patches. To do this, understanding sea 

level rise is crucial. In the 20th century the sea level rise on a global scale was roughly 1.7 mm 

per year; however, relative sea level rise rates for the mid-Atlantic region (New York to North 

Carolina) were higher, falling amid 2.4 and 4.4 mm each year (Anderson et al., 2009). The 

Intergovernmental Panel on Climate Change (IPCC) made a projection in the year 2007, that 

there will likely be a global sea level rise between 19 and 59 centimeters by the year 2100. Other 

studies have proposed a global sea level rise of a meter or more by the end of the 21st century. 

However, there is no known agreement on just how much the sea level will rise globally because 

of rapid changes in ice flow from Greenland and Antarctica (Anderson et al., 2009). Trail et al. 

(2011) estimates state that by the year 2100, global sea level rise could be as much as 1.8 m. 

Cahoon et al. (2009) discussed effects of the rates of sea-level rise over the next few 

decades in North Carolina non-tidal coastal wetlands using three scenarios of wetlands 

accretionary dynamics. Scenario 1, referred to as the non-drowning scenario, expects sea-level 

rise to maintain a constant rate of 2 to 4 mm per year (like that of the twentieth century). Sea 
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level rise scenarios 2 and 3 both predict accelerated rates of sea-level rise. One projected effect is 

called drowning (Scenario 2). In this case, rates of vertical accretion are unable to match 

accelerating sea-level rise rates, and barrier islands persist unharmed. Wetlands, such as salt 

marshes, will experience collapsing and internal breakup of the marsh (Cahoon et al. 2009). 

Scenario 3, referred to as the barrier islands breached scenario, experience the collapse of some 

portions of the barrier islands. This collapse would be because of the Albermarle-Pamlico (A-P) 

regions of North Carolina experiencing the transition from a non-tidal estuary to an astronomic 

tidal regime (Cahoon et al. 2009). 

Coastal impact models can aid in defining the susceptibility of regions and populations to 

variations in sea level (McLeod et al. 2010). However, there are a wide range of models (each 

with strengths and weaknesses) that are well-matched for diverse management goals (McLeod et 

al. 2010). Reyes (2009) assessed landscape wetland models that were geographically explicit, 

highlighting models that integrated environmental dynamics and responses into the landscape to 

exemplify ecosystem methodologies. He emphasized landscape models that triggered long-term 

modifications because of climate change, sea-level rise, and variations in patterns of land use and 

land cover. Reyes (2009) states that a variety of organisms (diverse vegetation and fauna) and 

their interactions occur in particular areas and have different responses to universal or local 

environmental drivers. When a wetland has water flowing over it, the vegetation may respond 

differently with sediment deposition, time period of inundation, and nutrient inputs. When there 

is an increase in the biomass of plants, then the movement of water and tidal channel 

morphology could consequently be changed (Reyes, 2009).  

Disturbances and stresses related to environmental conditions and environmental drivers 

are an important aspect of my study. To further the understanding of this literature, my work 
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assesses differences among four locations with different hydrogeomorphologies within a salt 

marsh. Again, I will assess how measured factors explain the differences in horizontal movement 

of Juncus among the four hydrogeomorphic locations related to my conceptual model. 

 

 

 

 



 

 

METHODS 

Definition of Terms 

Location: Sampling occurred at four different locations within Upper Phillips Creek marsh 

(UPC). Location 1 is the low marsh area near a tidal creek, Location 2 is the organic high marsh 

area away from the creek, Location 3 is the subsiding high marsh area near a pond, and Location 

4 is the high marsh area near a creek. Brinson and Christian (1999) measured the distances from 

each of the four locations to the creek in the year 1990. Location 1 was 20 m from the creek, 

location 2 was 300 m, location 3 was 120 m, and location 4 was 60 m. 

Site: There are two sites within each location. These are referred to as sites A and B. The 

approximate distances between sites A and B at each location are generally more than 20 meters 

and less than 50 meters apart. 

Plot position: Within each site there is an “in” and an “out” plot. “In” means the permanent plot 

area that was inside a J. roemerianus patch when the original boundary was established, and 

“out” means the permanent plot area that was outside the J. roemerianus (containing other plant 

species) when the original boundary was established. 

Last continuous Juncus: refers to the very last grid (within 10 columns) that Juncus was 

continuously found from the “in” plot. This number can range from 1 to 20. 

Juncus: Juncus roemerianus unless otherwise specified  

Wrack: When referring to wrack, I really mean wrack and litter combined. For all data sets, 

dating back to 1990, the wrack and litter data for ground cover were combined. However, the 

majority of what was found was wrack with very little litter. 
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Study site 

The site under study is the Upper Phillips Creek (UPC) marsh, positioned at latitude of 

+37.28300 and longitude of -75.91300 (Figure 2). UPC is within the Virginia Coast Reserve 

(VCR), located on the Delmarva Peninsula, Virginia, USA, which is one of 24 U.S. Long-Term 

Ecological Research (LTER) sites (http://www.lternet.edu/lter-sites) The VCR barrier 

island/lagoon system is made up of approximately 14,000 ha, partly owned by The Nature 

Conservancy (TNC), and it spans 110 km along the Atlantic shore of the Delmarva Peninsula 

(http://www.vcrlter.virginia.edu/lteriii/projdesc.html). 

UPC marsh starts at an upland pine forest and freshwater swamp and goes through a high 

marsh area in which D. spicata, S. patens and J. roemerianus dominate. It then stretches down to 

a low marsh area in which S. alterniflora is the dominant species. The tidal range, on average, is 

150 cm (Christiansen 1998). At UPC near location 3, the porewater salinity ranges from 8 in the 

winter to 30 in the late summer (Buck 2001). 

 



 

23 

 

 
Figure 2: Delmarva Peninsula with position of Upper Phillips Creek marsh.  (Tracy Buck 2001 

thesis and Hayden et al. 1995) 

 

Experimental Design 

In 1990, eight 3 x 8 m permanent plots were established within the Upper Phillips Creek 

marsh. The plant species present at each location in 1990 and 2014 are shown in Table 1. 

Relative elevation and distance from creek are as reported in Brinson and Christian (1999). Two 

sites (A and B) were positioned in each of the 4 different locations (Figure 3). Each site covered 

the boundary between a Juncus patch (4 x 3 m) and the adjacent plant community (4 x 3 m) 

(Figure 4).  
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For the purpose of my thesis I sampled during the years 2012, 2013, and 2014. I am 

including data previously collected by Mark M. Brinson, Robert R. Christian, and their students 

from 1990 through 2011. 

Table 1: Important species and their position (measured in 1990) relative to the creek at Upper 

Phillips Creek marsh. 

 
 

 
Figure 3: Upper Phillips Creek site positions from my study (1A-B to 4A-B), and transects from 

Amanda Floyds study (numbers 1-9). 

Ground cover 

Every year (once a year) from 1990 to 2014, observations of ground cover were made on 

1 x 2 m permanent subplots with 1 x 1 m on both sides of the original interface (Figure 4). The 

Upper Phillips Creek Site permanent plots were accessible by walking through the salt marsh. 

Geographic 

position within 

marsh Location Sites

Relative 

Elevation 

(m)

Distance 

from 

Creeks (m)

Juncus 

roemerianus

Spartina 

alterniflora

Spartina 

patens

Distichlis 

spicata

Salicornia 

spp.

Limonium 

nashii

Organic High 2 2A and 2B 1.4 300  +  -  +  +  -  -

Subsiding 3 3A and 3B 1.18 120  +  +  +  +  -  -

Near-creek High 4 4A and 4B 1.28 60  +  +  -  +  +  -

Near-creek Low 1 1A and 1B 1.22 20  +  +  -  + *  +  +

* = very low abundance

Upper Phillips Creek Marsh 1990 Presence (+) or Absence (-) of species for 1990
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Caution was taken not to crush or flatten the zones studied or excessively disturb them. Subplots 

were visually sampled within a 1 x 1 m PVC quadrat using white string to divide the quadrat into 

100 10 x 10 cm grids (Figure 5). Each year the quadrat was placed in the two permanent 

positions within each plot. The type of ground cover within each of the 200 grids was 

determined. Species were ranked in order of cover dominance inside each grid from 1990 until 

2014. If at least half the grid was bare soil, the designation of bare was given to the grid. Each 

grid was assigned 1-3 categories of plant and ground cover. The number of grids containing 

different categories of cover per 200 possible were computed (in a 2 x 1 m permanent subplot). 

  
Figure 4: 3 x 8 m permanent plot with 1 x 2 m permanent subplots. Juncus patch and adjacent 

plant community. 

 

 
Figure 5: Dr. Brinson with a 1 x 1 m quadrat. 

 

The grids were counted for each taxon of plant (Juncus, S. alterniflora, S. patens, D. 

spicata, Limonium nashii, and Salicornia spp.) and each type of ground cover (litter, wrack, and 
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bare) for all 8 plots. I focused on the dynamics of Juncus and wrack (with little litter), and 

studied information on which row the last continuous Juncus grid is located for every year and 

every plot. Also, the number of grids of Juncus and wrack each year was tracked. All of these 

data were used to determine how Juncus patch borders have moved and changed over time. 

Changes in position of border of Juncus patches 

Using the same data set as the ground cover data, I measured the last continuous Juncus. 

This was measured within the 1 x 2 m plots and gave information on which row the last 

continuous Juncus grid was located in for every year and every plot. This method was a 

continuous method with a maximum of 20 grid units possible, so some of the Juncus may have 

gone undetected that may have been picked up by the ground cover data set. 

I extended my observations within 1 x 2 m permanent plots to have better inference on 

the dynamics of patches. First, in April of 2014, I measured the distance of the current border of 

Juncus and adjacent plants from the original border of Juncus and adjacent plants at each of 8 

sites. This was done by using a piece of PVC pipe 3 m long and laying it along the original 

border. The PVC pipe was marked at 30 cm intervals across the 3 m for a total of 11 

measurements. Another “T” shaped PVC pipe was placed on top of the 3-m long PVC pipe every 

30 cm to make a right angle with the original border to ensure that I was measuring a 

perpendicular line out to the current border of Juncus. These 11 measurements were taken by 

extending a tape measure out from the base of the “T” shaped PVC pipe to the current border of 

Juncus and then recorded. The measurements showed how far towards the “in” or “out” Juncus 

extended at each PVC interval mark. 

Floyd (2007) established 9 6-m transects within UPC in 2004, with 3 m of each inside a 

patch of Juncus and 3 m inside a mixed community of S. patens and D. spicata. These transects 
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were established in 2004 in each of low, middle, and high marsh areas (labeled 1-9 in Figure 3). I 

measured the position of the interface at each location by using a tape measure on April 5, 2014. 

Aboveground biomass of Juncus and other plant species 

Aboveground biomass was measured in August 1990, February 1992, August 2013, and 

August 2014. These measurements were taken outside the 1 m x 2 m plots for ground cover but 

within each 3 m x 8 m permanent plot. Sampling differed slightly among years, but generally 

was random and 1.5-2 m away from the edge of the larger plot. A PVC pipe quadrat was used to 

measure a plot size of 0.0625m2 (0.25m x 0.25m) for the years 1992, 2013, and 2014. The PVC 

pipe quadrat was 0.25 m2 (0.5m x 0.5m) for the year 1990. There was a total of 16 aboveground 

biomass samples for the years 1990, 2013, and 2014, and 32 samples for the year 1992. 

Aboveground biomass samples were taken at each “in” and “out” area (duplicates in 1992). The 

plants were clipped at the base, as close to the soil as possible. They were then placed in a trash 

bag, tied up, and labeled with the location and date. They were taken to the lab and placed in the 

freezer. The plant species were separated and the different categories included Juncus leaves that 

were all green, part green, part brown, and standing dead. Other categories were S. alterniflora 

live and dead, S. patens live and dead, D. spicata live and dead, and Salicornia spp. live and 

dead. For Juncus “all green” means plants that are entirely green or >95% green, “part green” 

means the green portion of culms that have started to die, “part brown” means the brown portion 

of culms that have started to die, and “standing dead” means plants that are entirely dead. For the 

other plant species “live” means plants that have at least some portion of green on them, and 

“dead” means culms that are entirely brown or dead. For the years 2013 and 2014, the dead 

biomass for S. alterniflora, S. patens, and D. spicata were combined. 
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After separating the Juncus leaves, the number of growing (meaning all green) Juncus 

leaves were counted as well as the number of senescing (meaning part green and part brown) 

Juncus leaves for all four years. Then the growing height (cm) (meaning all green) and the total 

height (cm) (meaning the whole leaf, green and brown) of Juncus leaves (up to 20) was 

measured with a ruler. Samples were dried in the oven at 85°C and weighed to the nearest 0.1 g. 

Site characterization 

To characterize sites, measurements of other variables associated with my conceptual 

model were taken on both sides of the original patch interface at each of the 8 sites. The 

variables included macro-organic matter (August 1990, August 1991, July 1992, and June 2014), 

soil bulk density (August 1990, August 1991, July 1992, and June 2014), water depth (May to 

November 2014), and salinity (May to November 2014). All of the field data and measurements 

were analyzed in the laboratory at East Carolina University. 

To determine macro-organic matter and soil dry bulk density (live and dead organic 

matter not passing through a 1-mm sieve) cores with a diameter of 3.7 cm were taken to 10-cm 

depth in the 4 different locations (sites A and B at each location, each containing an “in” and 

“out” of Juncus). In July of 2014, a total of 4 cores were taken within each community (i.e., in 

and out) within each site opposite the side of the permanent plots. A random number chart was 

used to determine the position of cores. The core was inserted into the soil and constantly twisted 

while pushing down slightly. A rubber stopper was inserted at the top, and the core was rocked 

back and forth to loosen the surrounding soil to try and pull the core up without losing any soil. 

Cores were extruded onto a cutting board. Soil from deeper than 10 cm was removed from the 

sample with a flat blade knife. The core samples were placed in Ziploc bags, sealed, and labeled 

and then returned to the laboratory. 
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The macro-organic matter (MOM) was separated by washing all the inorganic matter/dirt 

away on a 1 mm sieve. The samples were placed on the aluminum foil pans and dried at 85°C 

until constant weight to 0.01 g (Gallagher 1974). Approximately 1-2 g of plant samples were 

then homogenized through a Wiley Mill using a 40 mesh screen.  Aluminum weigh pans or 

crucibles were marked by sample number, and then weighed to 0.01 g. Then the samples were 

put on the aluminum pans or crucibles, and dry weight was recorded. The homogenized samples 

were placed into the muffle furnace, burned at 500ºC for 3 hours and cooled overnight. This 

process, known as Loss on Ignition (LOI), burns off all of the organic material leaving only the 

inorganic contents as ash. Then, this ash weight is subtracted from the dry weight, giving the Ash 

Free dry mass (or the weight of organic materials), which was recorded in thousandths to 0.001. 

Percentage LOI of dry mass was converted to MOM as g ash free dry mass per m2 to 10-cm 

depth using bulk density and core volume. 

Soil dry bulk density (g/cm3) was measured by taking one cores weight (g) from each 

area and dividing it by the volume (cm3). Cores of 10 cm in length were dried at 105°C to 

constant weight. The cores were weighed to nearest 0.001 g and the data were recorded. The core 

volume was estimated the same way as the MOM data, giving a volume of 107.5 cm3. 

On Monday, April 21, 2014, PVC wells were placed in the marsh to a depth of 25 cm to 

measure water depth and salinity. Wells were designed by Buck (2001) and refurbished from her 

study. As in Buck 2001, the PVC wells were ½” (1.27 cm) with 1/8” (0.32 cm) holes drilled in 

them from ground level to 25 cm below the surface. The holes permitted water to be collected in 

the wells from adjacent soil, and 1 mm2 mesh nylon screen was wrapped around the end with 

holes to slow the accumulation of sediments. The wells were placed opposite the permanent plots 

(on the right side of the larger plots looking into plot from outside Juncus) approximately 1 m 
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from the original border of Juncus, and 0.5 m in from the edge of the 3 m x 8 m plots. The wells 

were placed within each “in” and “out” area of the 2 sites located at each of the 4 different 

locations for a total of 16 different salinity wells in the salt marsh. The water depth and salinity 

were checked once per month for the months of May, June, July, August, September, and 

November of 2014. The height of the salinity well above ground was measured by placing a ruler 

at ground level and measuring to the top of the well. Then, a wooden rod (labeled with 

measurements) was placed into the wells until the end hit the bottom. The original total height of 

the well was measured (in inches) by keeping a finger on the top of the rod exactly at the top of 

the well and measuring down to the very end. The height of well below ground was recorded by 

taking the difference between the aboveground height of the well and the original total height of 

the well. The measurements for water depth within the well were recorded by removing the rod 

from the well and measuring it from the point of wetness down to the tip. Lastly, the water depth 

relative to ground level were found by taking the measurement for the wet portion of the rod and 

subtracting the height of the well below ground. To account for the displacement of water, when 

using the wooden rod to measure water depth, the formula below was used. 

hw = h(w+r) * (rw
2 -rr

2)  
               rw

2 
 

hw = height of water without rod 

h(w+r) = height of water measured on rod 

rw
2 = radius2 of the well 

rr
2 = radius2 of the rod 

 

After recording the water level measurements, each well was pumped dry. This was done 

by using a self-made tool. A H20 Blaster Water Squirter was assembled with a short piece of a 

water hose on the end connected to a long piece of rubber tubing on the end. The long rubber 
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tubing was connected to a rod to keep it straight so that it would easily reach the bottom of the 

wells. Once all of the water was pumped out of the well, I waited for the well to fill up again. 

Once it refilled the water within the well was sampled for interstitial water salinity using a 

refractometer. 

Data and Statistical Analyses 

The data were managed and initially analyzed as Excel documents. Averages, variances, 

and standard deviations for each plot were calculated, and graphs were made to compare data. 

The program R was used to analyze my data further. This included analyzing the ground cover 

data, last continuous Juncus data, Juncus border measurements data, Floyd (2007) transects data, 

aboveground biomass data (including biomass, density, and height), macro-organic matter (ash 

free dry mass) data, soil bulk density data, salinity data, and water depth data. For each response 

variable a table of results including median and means was generated, as well as a box and 

whisker plot. A design plot describing the locations, a multi-way ANOVA table, and a Tukey’s 

post-hoc test for differences among locations was also often included. If the ANOVA interaction 

between location and year was significant at 0.05 level, an interaction plot was created. If the 

interaction between year and location was not significant at 0.05 level, then a post-hoc test was 

calculated if locations were significant. Transformations were not done because the focus of my 

study was on the significance of locations and their interactions. ANOVAs did not include 

repeated measures because year contributions to the response variable variation were addressed 

as a main effect. 

Rates of horizontal movement of Juncus were calculated for all four measures of position 

change. For each location (1-4) and site (A or B), a regression line, r2, rates (cm/y), and period of 

years were shown in the calculation of rate of horizontal movement for the last continuous 
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Juncus and Juncus ground cover data. Each grid unit equals 10 x 10 cm, so grid units are in 

decimeters (dm). Regressions were calculated in Excel on the period of years it took for each site 

to reach the first maximum (20 grids for LCJ and 200 grids for ground cover). For Last 

Continuous Juncus the outer limit of measurement was 20 grid units, so the data from the results 

were converted into rates of change for horizontal movement (cm/y). The rate calculations came 

from a regression slope (grid/year x 10 cm) of distance vs year. The same periods of years for 

each location and site were used for the Juncus ground cover data as were for the Last 

Continuous Juncus data to get the rates of the number of grids per year. The rate calculations 

came from the slope of the line (dm2/m/year divided by 10 dm/m times 10 cm/dm to get cm/y). 

For locations that didn’t reach the outer limit, a linear regression was done on the whole 24 year 

period. Rates of horizontal movement of 3-m wide Juncus patch borders (cm/y) were calculated 

for location and site, and then that distance was divided by the 24 years of study. Also, the rates 

for horizontal movement for the transect study (cm/y) was calculated by taking the average 

distances from each area and dividing by the number of years between the measurement date and 

the set up date (10 years). 

 



 

 

RESULTS 

 The organization of results reflects my conceptual model. First, Table 2 is shown 

as an overview of the four, studied locations, including distances from a tidal creek, and the 

presence and absence of important species within my locations for the years 1990 and 2014 

(Table 2). The distance from creeks column helps to identify the difference in 

hydrogeomorphology of locations, which links to species presence within the 1 x 2 m permanent 

plots. Some species have disappeared within a location (or certain sites) since the first year of 

study (1990). In the organic high marsh location (location 2), S. patens and D. spicata were both 

present in 1990 and no longer present in 2014. This is because Juncus overgrew the whole plot. 

In the near-creek high marsh location (location 4), D. spicata and Salicornia spp. were both 

present in 1990 and were shown to have disappeared by 2014; S. alterniflora has replaced them.  

In the near-creek low marsh location (location 1), D. spicata is shown to have been in very low 

abundance in 1990, and had greater presence in 2014. The subsiding marsh location (location 3) 

had the same species over the entire time.  

Table 2: Characteristics of locations.  Plant species are identified, as well as their whereabouts 

(measured in 1990) relative to the creek at Upper Phillips Creek marsh. The presence and 

absence of species within the marsh is indicated for the years 1990 and 2014. Distances to the 

creek are from Brinson and Christian (1999). 

 
 

I present data that show how the border of J. roemerianus moves and the difference in 

horizontal movement among the 4 locations at Upper Phillips Creek. These data show statistical 

differences among locations for rate of change between the original and current boundaries of J. 

1990

Geographic 

position within 

marsh Location Sites

Distance 

from 

Creeks (m)

Juncus 

roemerianus

Spartina 

alterniflora

Spartina 

patens

Distichlis 

spicata

Salicornia 

spp.

Limonium 

nashii

Organic High 2 2A and 2B 300  + / +  - / -  + / -  + / -  - / -  - / -

Subsiding 3 3A and 3B 120  + / +  + / +  + / +  + / +  - / -  - / -

Near-creek High 4 4A and 4B 60  + / +  + / +  - / -  + / -  + / -  - / -

Near-creek Low 1 1A and 1B 20  + / +  + / +  - / -  + * / +  + / +  + / +

* = very low abundance

Upper Phillips Creek Marsh Presence (+) or Absence (-) of species (1990/2014)
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roemerianus, as well as give insight on patch border dynamics and the movement of adjacent 

plant communities. The ground cover data show statistical changes in ground cover relative to 

location and the importance of wrack (combined with little litter) and bordering communities. 

Aboveground biomass data summarize the condition of J. roemerianus and neighboring plants at 

each location. The site characterization section describes results within each of the 4 locations 

for environmental factors listed in my conceptual model: salinity, water depth, MOM as ash free 

dry mass, soil dry bulk density, and elevation. 

The results are generally presented with a design plot, box plot, ANOVA table, and post-

hoc test table. When statistically significant interactions were found by ANOVA, an interaction 

plot is presented. In all of the design plots, the horizontal black line is the overall mean for the 

response variable. The vertical lines represent the explanatory variables, and the distance of each 

vertical line (the hash marks) gives a sense of the importance of the factor in explaining the 

variation in the data. These hash marks are at the mean for the group defined by the level of the 

factor.  

In all of the box plots, the darkest line in the middle of each box and whisker plot 

represents the median value for the response variable. The lower part of the box, known as the 

first quartile (Q1), is the median of the bottom half of the data. The upper part of the box, known 

as the third quartile (Q3), is the median of the top half of the data. One whisker extends out from 

the bottom of the box to the minimum nonoutlier value, and the other whisker extends out from 

the top of the box to the maximum nonoutlier value. The small circles indicate any outliers in the 

data. 

A post-hoc test, more specifically Tukey’s test, was used to test the differences in the 4 

locations for each data set. The first column within related tables, “Location,” shows the two 
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locations being compared. The second column, “Difference,” shows the difference between the 

two locations. The third column, “Lower 95% CI,” shows the lower value of the 95% confidence 

interval (CI) of the differences. The fourth column, “Upper 95% CI,” shows the upper value of 

the 95% CI of the differences. The last column, “P value adjusted,” represents the P value 

adjusted for multiple comparison. Also, for some of the design plots in my study with location as an 

explanatory variable, locations are ranked according to these post-hoc tests. They are ranked by 

statistically significant post-hoc categories (a-d), with “a” being the highest and the letter farthest 

along the alphabet being the lowest. Any letters (a-d) may be combined in order to display which 

locations are similar. Where these letters are displayed, an ANOVA showed no significant 

interaction between location and year. If an ANOVA indicated that there was significant 

interaction between location and year, most of the time a post-hoc test was not done, an 

interaction plot is shown, and patterns are explained in text. 

An interaction plot shows a response variable on the y-axis and time on the x-axis. The 

means of the response variable for each location are displayed with connecting lines between 

samplings.  

Patch border dynamics and horizontal movement of Juncus across the original border 

Last Continuous Juncus 

The following section expresses how J. roemerianus is related to patch border dynamics. 

It describes how the J. roemerianus border is moving horizontally. Again, “last continuous 

Juncus” refers to the very last grid (within each of the 10 columns) in which Juncus was found, 

continuous from the “in” plot. This number can range from 1 to 20, and can’t have a value 

greater than 20. So, the information from the data are limited when the column meets the 20th 

grid. Each grid unit equals 10 x 10 cm. Thus, a mean of 10.6 grid units equals 106 cm from the 
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edge of the plot interior to the Juncus patch. The units in the following sub-sections are in 

decimeters (dm). 

Averaged over the 8 sites, the borders of Juncus patches have expanded from 1990 to 

2014 (Table 3). Note, that the number 1 represents that Juncus is > 0.9 m inward from the 

original boundary, 10 and 11 divide the original boundary established in 1990, and 20 represents 

that Juncus is > 0.9 m outward from the original boundary.  In 1990 the mean value across the 10 

rows for Juncus was at 10.5 dm, which was near the predicted original boundary of 10 dm, and 

the standard deviation was 2.2. By 2014, the mean value moved out to 15.3 dm, with a standard 

deviation of 5.5. Also, the standard deviations are shown to have increased over time as the 

differences among locations increase. Furthermore, there is a general trend outward with various 

years of inward movement.  Inward movement may have been related to storm events, which is 

discussed later. 
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Table 3: Descriptive statistics of position of Juncus border over all locations in grids of 1 dm in 

length. The numbers 1-20 represent the row in which Juncus was found within the 1 x 2 m 

permanent plot. The number 1 is at the most inward portion of the “In” area of each site. 

Numbers 10 and 11 represent the most outward portion of the “In” and the most inward portion 

of the “Out” area (in that order) in which Juncus was found. Right around these two numbers lies 

the original horizontal boundary between Juncus and bordering communities. The number 20 

represents the most outward portion of the “Out” area in which Juncus was found. 

*Note: Number of samples for all years (1990 to 2014) was 80, except the year 2011 had only 40 

samples. Locations 2 and 3 were not sampled during this year. 

 

LCJ min Q1 median Q3 max mean sd 

1990 5 9 10 12 17 10.5 2.2 

1991 6 9 10 12 18 10.6 2.1 

1992 5 10 10 12 20 11.2 2.5 

1993 6 10 10 11 20 10.9 2.8 

1994 9 10 11 12 20 11.8 2.7 

1995 0 10 11 13 20 11.1 4.6 

1996 0 10 12 13 20 11.2 4.8 

1997 0 9.8 11 13.3 20 11.1 4.9 

1998 0 9.8 12 15 20 11.9 5.1 

1999 0 9 13 15.3 20 12.1 5.4 

2000 0 9.8 12.5 16 20 12.6 5.4 

2001 0 10.8 14 17.3 20 13.6 5.5 

2002 0 10 14 18.3 20 13.3 5.9 

2003 0 11 14 20 20 14.1 5.9 

2004 0 12 15 20 20 14.4 6.0 

2005 0 12 15 20 20 14.5 5.8 

2006 0 13 15.5 20 20 14.7 5.8 

2007 0 10 16 20 20 14.5 5.8 

2008 0 13 16 20 20 14.9 5.8 

2009 0 14 16 20 20 15.4 5.5 

2010 0 13 15.5 20 20 15.2 5.6 

2011 0 9 18 20 20 14.4 6.6 

2012 0 10.8 15 20 20 14.8 5.4 

2013 1 10.8 15 20 20 14.7 5.6 

2014 1 14 16.5 20 20 15.3 5.5 
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The design plot shows data for the mean of the Last Continuous Juncus (LCJ) data 

related to the 3 explanatory variables year, location, and site (Figure 6). The mean values of 

location for Last Continuous Juncus were averaged for each location and over all the years, 1990 

to 2014 (Figure 6). ANOVA for Last Continuous Juncus data for locations, found individual 

locations do act differently from one another (p<0.0001 level) (Table 4). Also, there was a 

significant interaction between location and year at the p=0.001 level (Table 5). Locations 4 and 

2 were barely significantly different (p=0.05), and all of the other locations were significant at 

the p<0.0001 level (Table 6).  

Differences in LCJ among locations can be found for data aggregated across years.  A 

very large amount of variation occurred at location 1 (because of site B to be discussed later), 

especially at the lower end where 2 outliers are seen in the box plot (Figure 7). At location 4, 

there was little to no variation because the LCJ reached the upper limit of 20 grids quickly. The 

Juncus border at location 2 reached the upper limit as well, just for not as long as at location 4. 

This is why there was little variation shown towards the upper limit of location 2 (Figure 7). 

The difference among years (1990-2014) was statistically significant (Table 4). As 

expected, the mean for the year 1990 was approximately 10 dm, which was where the original 

border between J. roemerianus and adjacent plant communities was established (Figure 6). The 

year 2009 had the highest mean, followed very closely by year 2014. Site B had a lower mean 

value, which was probably largely because of location 1 site B (Figure 6). 
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Figure 6: The mean of the last continuous Juncus (dm) for the various groups created by the 

explanatory variables: year, location, and site. 

 

 
Figure 7: Last continuous Juncus (dm) descriptive statistics for the 24 years at each location. 

Shows how far “in” or “out” Juncus moved relative to the original border. 

 

 

Table 4: Last continuous Juncus data. ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 572.0 23.8 3.888 < 0.0001 *** 

Location 3 2816.1 938.7 153.139 < 0.0001 *** 

Site 1 94.5 94.5 15.417 < 0.000126 *** 

Residuals 167 1023.7 6.1   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Table 5: Last continuous Juncus data. ANOVA year * location Interaction. 

ANOVA summary for year * locations 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 572.0 23.8 4.752 < 0.0001 *** 

Location 3 2816.1 938.7 187.156 < 0.0001 *** 

Year:Location 70 626.6 9.0 1.785 0.00407 ** 

Residuals 98 491.5 5.0   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 6: Last continuous Juncus data. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 8.0036 6.4466 9.5606 0.000 

3-1 3.7411 2.1841 5.2981 0.000 

4-1 9.6300 8.0890 11.1710 0.000 

3-2 -4.2625 -5.8353 -2.6897 0.000 

4-2 1.6264 0.0694 3.1834 0.037 

4-3 5.8889 4.3319 7.4459 0.000 

The patterns for means of LCJ were shown for each of the 8 sites (Figure 8 and Figure 9). 

High marsh sites for locations 2 and 4 moved outward the fastest over the years. The outer limit 

of means (i.e., 20 grid units) was reached during the years 2001 to 2011 by site 4A. Throughout 

the years 2004 and 2011, site 4B also reached the outer limit. Site 2B reached the outer limit 

during the years 2005 through 2014; though, there were no data for this site for the year 2011. 

However, it can be assumed that it was at or beyond the outer limit (Christian, personal 

communication). Sites at location 3 moved little. The low marsh location (location 1) moved 

inward.  

The potential impacts of storm-induced wrack can be seen.  The low marsh locations 

were likely to be impacted by wrack more than the high marsh locations. Location 1 site B 

experienced a major inward spike in 1995. Also, Location 4 site B experienced a relatively large 

inward spike in 2011, and a relatively large outward spike in 2013. The years of inward 

movement for various locations occurred between 1992 and 1993, 1994 and 1995, 1996 and 
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1997, 2001 and 2002, 2006 and 2007, and between years 2012 and 2013. Also, inward 

movement started in the year 2009 and continuously moved inward through 2010 and into 2011. 

Major storms causing significant wrack events occurred at major dips or spikes on the 

graphs. These storms are indicated by vertical grey lines (Figure 8 and Figure 9). The Juncus 

information in both graphs is the same except for the positions of the vertical grey lines. The 

grey lines in Figure 8 show the years in which nor’easters occurred, and in Figure 9 they 

represent the years in which hurricanes occurred and impacted Upper Phillips Creek. Nor’easters 

occurred near UPC during the years 1994, 1996, 1998, 2000, 2007, 2009, 2011, and 2013 (Figure 

8). Hurricanes occurred near UPC during the years 1996, 1998, 1999, 2003, 2004, 2005, 2006, 

2008, 2011, 2012, 2013, and 2014 (Figure 9). 

The definition of hurricanes refers to historical records that list tropical storms as causing 

significant damage in eastern Virginia (http://www.erh.noaa.gov/akq/adobe_pdf/Hurrhist.pdf). 

The source of information on hurricanes throughout my thesis also comes from the 

aforementioned site. The source of information on nor’easters throughout my thesis comes from 

the following sites (http://www.erh.noaa.gov/lwx/Historic_Events/va-winters.htm , 

http://www.nhc.noaa.gov/data/tcr/index.php?season=2012&basin=atl , 

http://www.stormsurge.noaa.gov/event_history_2010s.html). The definition of nor’easters refers 

to the biggest winter storms in Virginia, which bring high pressure, artic flow of cold and dry air 

(http://www.erh.noaa.gov/lwx/Historic_Events/va-winters.htm), and some that even deposit 

wrack over the marsh. 

http://www.nhc.noaa.gov/data/tcr/index.php?season=2012&basin=atl
http://www.stormsurge.noaa.gov/event_history_2010s.html
http://www.erh.noaa.gov/lwx/Historic_Events/va-winters.htm
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Figure 8: Last continuous Juncus mean values (dm) averaged for all 10 rows in which J. 

roemerianus was found at each location and site within the marsh for all the years 1990 through 

2014. The vertical lines show times of potential major wrack events caused by nor’easters.  

 

 
Figure 9: Last continuous Juncus mean values (dm) averaged for all 10 rows in which J. 

roemerianus was found at each location and site within the marsh for all the years 1990 through 

2014. The vertical lines show times of potential major wrack events caused by hurricanes.  
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The years of inward movement is indicated by inward movement of LCJ position. This 

was determined by a dip of at least 2 dm (occurring at least at one site). Years with this inward 

movement were compared to occurrences of storms and wrack (Table 7). To determine whether 

or not wrack was present during the years of inward movement, 50 or more grids had to contain 

wrack between those time periods. Usually when a nor’easter occurred a great amount of wrack 

was deposited on the marsh, however that was not the case in 2009-2010. The nor’easter in 1994 

seemed to be the most important, showing the biggest dip at location 1 site B (Figure 8). Also, in 

2011, there was a large dip at location 4 site B (Figure 8). This is likely due to the fact that there 

was a major nor’easter and a major hurricane that occurred during the period of years 2010-2011 

(Table 7).  

Table 7: The presence or absence of a Nor’easter or Hurricane, along with the presence or 

absence of wrack, is noted for the period of years with inward movement. 

Years of Inward Movement Major Nor’easter Major Hurricane Wrack 

1992-1993 - - + 

1994-1995 + - + 

1996-1997 + + + 

2001-2002 - - - 

2006-2007 + + + 

2009-2010 + - - 

2010-2011 + + + 

2012-2013 + +* + 

Note: Inward movement was continuously noted from 2009 until 2011. 

* = 2 hurricanes occurred during those years. 

Ground cover for Juncus 

Ground cover data for Juncus were related to factors location, site, and year (Figure 10). 

The difference among locations was statistically significant at the p<0.0001 level (Table 8). 

Location 4 had the most Juncus at a mean over the 24 years of approximately 190 grids or dm2, 

followed by location 2 around 160 dm2, then location 3 at 115 dm2, and location 1 with the least 

amount of Juncus at 70 dm2 (Figure 10). However, there was a significant interaction between 
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location and year at p=0.01 (Table 9). A larger amount of variation occurred at location 1 

(because of site B) (Figure 11). At location 4, very little variation occurred at the upper portion 

of the box plot because it almost reached the maximum of 200 dm2 (Figure 11). An interaction 

plot of Juncus ground cover (dm2) is also shown for the four locations over the 24 years (Figure 

12). The year and location interaction (Table 9) was probably because of location 4, which had 

the highest amount of grids with Juncus over the majority of the years (Figure 12). However, all 

locations were similar in 1990. Also, location 4 showed two major decreases in 2005 and in 

2011, largely because of wrack occurrence at site B. At location 4 there were 198.4 dm2 grids 

containing Juncus in 2011 and 144 dm2 in 2012, and then it went back up to 172 dm2 by 2014. 

Location 2 has been steadily increasing since 1990, reaching 195 dm2 by 2014. Location 3 also 

steadily increased over the years, reaching 147 dm2 by 2014. Location 1 started out with the 

highest amount of grids containing Juncus in 1990, but has been slightly decreasing over the 

years. Its major decrease was in 1994 because of wrack deposited at site B. Location 1 had the 

lowest amount of grids containing Juncus at 52.5 dm2 by 2014.  

The difference between years and sites were also statistically significant (Table 8). Year 

was statistically significant at the p=0.001 level, and sites were statistically significant at the 

p<0.0001 level (Table 8). A further ANOVA for interactions was done, and there was no 

significant interaction between year and site. Also, year 2009 had the highest mean, and the year 

1990 had the lowest mean (Figure 10). Site B was less than site A, again reflecting the impact of 

wrack. 
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Figure 10: Ground cover data for Juncus (dm2) related to the factors location, site, and year. 

 

 

 

 
Figure 11: Ground cover of Juncus (dm2) assessed over the 25 samplings for each location. 

Shows how far “in” or “out” Juncus moved relative to the original border. 
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Table 8: Ground cover data for Juncus. ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 46144     1923     2.22   0.0018 ** 

Location 3 335992   111997    129.45 < 0.0001 *** 

Site 1 20715    20715     23.94  < 0.0001 *** 

Residuals 167 144483      865      

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 9: Ground cover data for Juncus. ANOVA year * location Interaction. 

ANOVA summary for year * locations 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 46144 1923 2.33 0.0019 ** 

Location 3 335992 111997 135.67 < 0.0001 *** 

Year:Location 70 84297 1204 1.46 0.0422 * 

Residuals 98 80902 826   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

 

 
Figure 12: Ground cover data for Juncus (dm2) over the 24 years for each of the four locations. 
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Ground cover for Wrack 

The Ground cover data for wrack were related to factors location, site, and year (Figure 

13). The difference among locations was statistically significant at the p<0.0001 level (Table 10).  

Location 4 had the highest average amount of wrack, at 30 dm2. Locations 1 and 2 were similar 

with 10-12 dm2, and location 3 had the lowest amount at 5 dm2 (Figure 13). The distribution of 

wrack was quite patchy. Location 1 had a median value of only 0 dm2 with many outliers (Figure 

14). One outlier was as high as 200 dm2, meaning at least one of the 2 sites at location 1 reached 

200 dm2. This 200 dm2 was likely because of the large amount of wrack deposited in 1994 at 

location 1 site B. Location 2 had a median value at 0 dm2, with some variation between the 2 

sites, up to 50 dm2. Also, in location 2, some outliers ranged up to 75 dm2 (Figure 14). Location 

3 also had a median value at 0 dm2 with no variation, but many outliers. The outliers range from 

0 dm2 to 100 dm2. Location 4 had a median value at 5 dm2 with variation up to 100 dm2. One 

outlier ranged up to 150 dm2 (Figure 14).  

The year 1994 had a much higher mean than the rest of the years and contributed much to 

the source of outliers (Figure 13). There was a significant interaction between year and location 

(p=0.001) (Table 11). An interaction plot of grids containing wrack (dm2) was also shown for the 

four locations over the 24 years (Figure 15). Location 1 showed a spike in 1994, because of the 

nor’easter, causing wrack to reach 143 dm2. Location 4 showed a spike in 2006, causing wrack 

to reach 72.5 dm2. There was also a large spike in 2011, causing wrack to reach 64.5 dm2 and 86 

dm2 by 2012. After 2012 the wrack decreased to 52 dm2 by the year 2014. The year and location 

interaction (Table 11) was probably because of location 1 site B and location 4 site B. The 

difference between years and sites were also statistically significant at the p=0.001 level (Table 

10). However, a further ANOVA including interactions was done, and there was no significant 
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interaction between year and site. Although there was no significant interaction, a relationship 

can still be seen with various sites (Figure 16). The large amount of variation from location 4 

(Figure 14) comes largely from location 4 site B (Figure 16). Also, the large variation at location 

1 (Figure 14) can be explained because of location 1 site B (Figure 16). With so many outliers 

and differences between means and medians, these data are probably far from normal. Therefore, 

they do not meet the assumptions of the ANOVA; though, everything looks significant. 

 
Figure 13: Ground cover data for wrack (dm2) related to the factors location, site, and year. 
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Figure 14: Ground cover data for wrack (dm2) assessed over the 25 samplings for each location.  

 

 

Table 10: Ground cover data for Wrack. ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 44200     1842     2.27 0.00134 ** 

Location 3 14424     4808      5.93 0.00072 *** 

Site 1 7656     7656     9.45    0.00247 ** 

Residuals 167 135343      810     

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 11: Ground cover data for Wrack. ANOVA year * location Interaction. 

ANOVA summary for year * locations 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 24 44200 1842 2.90 0.00012 *** 

Location 3 14424 4808 7.57 0.00013 *** 

Year:Location 70 80730 1153 1.82 0.00324 ** 

Residuals 98 62268 635   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Figure 15: Ground cover data for wrack (dm2) over the 24 years for each of the four locations. 

 

 

 

 
Figure 16: Ground cover data for wrack (dm2) assessed over the 25 samplings for each location 

and site.  
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Wrack clearly had an effect on Juncus, especially at the Near-creek Low marsh (Location 

1 site B) (Figure 17) and the Near-creek High marsh (Location 4 site B) (Figure 18). On both 

graphs, the x-axis shows the years sampled, and the y-axis shows the number of 10 x 10 cm grids 

per the 200 possible (in a 2 x 1 m permanent subplot) that included that category of plant and 

ground cover. 

Location 1 site B (Figure 17) experienced a major wrack increase (a maximum of 200 

grid units) in the year 1994 and a decrease in Juncus (from 109 grid units in 1993 to 78 grid units 

in 1994). This was mainly because of the nor’easter that occurred in year 1994. Juncus reached 

its lowest point of 2 grid units in 1997. As the wrack diminished completely (0 grid units) in the 

year 2000, Juncus began to recover (15 grid units) in the year 2001, and was at 29 grid units in 

the year 2014. The year 1994 and location/site 1B had the highest wrack cover over my whole 

study. 

Figure 18 shows many increases and decreases in Juncus vs Litter/Wrack over the years 

at Location 4 site B. Major hurricanes and nor’easters, in relation to wrack deposition from 

nor’easters, are what caused the fluctuations in Juncus the majority of the time (Figure 8 and 

Figure 13). In 1991, Juncus was at 100 grid units, and wrack was at 3 grid units. By the year 

1992, Juncus had decreased to 87 grid units, because of the increase in wrack to 78 grid units. In 

1993, wrack decreased to 0 grid units; therefore, Juncus was able to increase to 129 grid units. 

Wrack stayed fairly low (between 0 grid units and 56 grid units) from the years 1996 to 2010, 

which allowed Juncus to reach its maximum value of 200 grid units by the year 2005. However, 

in the year 2011 a wrack event occurred causing wrack to increase to 129 grid units and then to 

its peak of 156 grid units by 2012. By the year 2012, Juncus had decreased to 90 grid units 
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because of the impacts of wrack cover. Lastly, by the year 2014, wrack began to decrease to 86 

grid units, allowing Juncus to recover to 146 grid units. 

 
Figure 17: Permanent plot data on groundcover for Juncus vs. Litter/Wrack (dm2) for Location 1 

Site B from 1990 to 2014. 

 

 
Figure 18: Permanent plot data on groundcover for Juncus vs. Litter/Wrack (dm2) for Location 4 

Site B from 1990 to 2014. 

 

0

50

100

150

200

250

G
ri

d
s 

w
it

h
 J

u
n

cu
s

Year

1 = Near-creek Low B

Juncus

Litt/Wrack

0

50

100

150

200

250

G
ri

d
s 

w
it

h
 J

u
n

cu
s

Year

4 = Near-creek High B

Juncus

Litt/wrack



 

53 

 

Juncus 3-m Wide Border Position 

The following section addresses movement of the 3-m wide border along all 8 J. 

roemerianus patches. In this case, the original Juncus border boundary line (where a PVC pipe 

was placed) was set at 0 cm. The border in summer 2014 was compared to the original 3-m wide 

border in 1990. The 11 measurements taken at each site (every 30 cm from 0 to 300 cm) were 

used to determine how far “in” or “out” the border has moved since 1990. This was done to give 

insight on Juncus patch border dynamics at a larger scale than for the 1-m wide plots. 

Figure 19 shows that location 4 had the highest mean for Juncus border data 

measurements at 250 cm, followed by location 2 at 150 cm; while locations 1 and 3 had very 

similar and lower means at 10 cm (p = 0.999) (Table 14). The 1 x 2 m plots had an upper limit of 

100 cm when compared to this method. The wider border at locations 2 and 4 exceeded the limits 

of the plots while the borders at 1 and 3 remained within the 1 x 2 m plot limits. There was 

insignificant difference between the two sites (A and B) (Table 13). 

The PVC marks 0-120 cm were considered edge of the 1 x 2 m plots, and all of the other 

PVC marks were considered non-edge.  The differences among locations for edge effects to the 1 

x 2-m plots were barely significant (p=0.051) (Table 13). Thus, an edge effect for the original 1 x 

2 m plots may be present as the distances at PVC marks 0 and 120 were lower than the rest of the 

measurements (Figure 19 and Table 12). This decrease in movement likely came from the 

disturbance of walking outside the edge of the quadrats for the annual 1 x 2 m ground cover 

measurements. 
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Figure 19: Juncus 3-m wide border position (cm) related to the factors location, site, PVC 

marks, and edge. The locations were ranked by statistically significant post-hoc categories (a-d), 

with “a” being the highest and the letter farthest along the alphabet being the lowest. Any letters 

(a-d) may be combined in order to display which locations were similar or different in patterns. 

 

 

 

Table 12: Mean values in order of lowest to highest along with their corresponding PVC mark. 

Mean values (cm) PVC Marks (cm) 

83.0 0 

83.6 120 

89.3 90 

92.0 60 

96.0 30 

103.9 180 

104.4 270 

105.1 150 

111.6 240 

118.1 210 

130.8 300 
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Table 13: Juncus border data. ANOVA summary for location, site, and edge. 

ANOVA summary for location + site + edge 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 863782 287927 93.31 < 0.0001 *** 

Site 1 1384 1384 0.45 0.505 

Edge 1 12062 12062 3.91 0.051  . 

Residuals 82 253016 3086   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 14: Juncus border data. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 134.364 89.85 178.88 0.000 

3-1 -1.818 -46.33 42.69 0.999 

4-1 234.136 189.62 278.65 0.000 

3-2 -136.182 -180.69 -91.67 0.000 

4-2 99.773 55.26 144.29 0.000 

4-3 235.955 191.44 280.47 0.000 

 

  Figures 20 and 21 show evident differences among locations and provide details of the 

data summarized in Figure 19 by highlighting the fact that at location 1 site B, the 1 x 2 m plot 

was not representative of the larger length. Location 1 Site B was largely responsible for the 

large amount of variation shown in location 1 as a whole (both A and B combined) (Figure 20). 

At location 1 site B the impacts of wrack on Juncus were much more severe with inward 

movement than beyond the 1 x 2 m plot (Figure 21). At site 1B there was a major dip in the data 

between 30 cm and 150 cm, showing that Juncus has moved a lot more inward (Figure 21). Also, 

the wider border at locations 2 and 4 exceeded the limits of the 1 x 2-m plots. 
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Figure 20: Juncus border measurements (cm) by site. These data indicate how far inward 

(negative values) or outward (positive values) Juncus moved from 1990 until 2014. 

 

 
Figure 21: Juncus border measurements (cm). A plot of the shapes over the 3-m wide PVC 

marked boundary. The closer the measurements were to 300 cm, the further outwards the Juncus 

moved. The closer to -100 the measurements were, the further inwards the Juncus has moved. 
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Transect Position 

The following data are an extension of transect measurements conducted by Floyd 

(2007). The location of the border in 2004 was considered 0 cm. These data (measured April 5, 

2014) show how far J. roemerianus has moved away from the original position in 9 6-m 

transects, established in 2004 (Figure 3). No inferential statistics were used for these data 

because only 9 measurements were taken (Table 15). These 9 observations support 

aforementioned sections regarding Last Continuous Juncus and Juncus Border Position. The 9 

transects were clustered into 3 distinct areas. Transects 1, 2, and 3 were considered the Transition 

zone, with a mean of 121.7 cm and a standard deviation of 85.0 cm (Table 15). Transects 4, 5, 

and 6 were near location 1, with a mean of 58.7 cm and a standard deviation of 62.9 cm. 

Transects 7, 8, and 9 were near location 2, with a mean of 149.0 cm and a standard deviation of 

54.6 cm. All but one of these measurements support my data on how J. roemerianus is moving 

outwards.  

Table 15: Measurements (cm) for all 9 transects moved outwards, except for transect 5. 

Transect Location 
Measurement 
(cm) 

Mean 
(cm) 

Standard Deviation 
(cm) 

1 Transition 125 121.7 85.0 

2   205     

3   35     

4 Near 1 125 58.7 62.9 

5   0     

6   51     

7 Near 2 170 149.0 54.6 

8   87     

9   190     
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Juncus and Bordering Communities 

The following data for total growing, senescing, and standing dead Juncus is for “In” 

samples only. The following data for total live and total dead bordering communities is for “Out” 

samples only. For all design plots in this section the horizontal line shows the overall mean for 

all locations and sites (32 total).  Also, note that all aboveground biomass data for the years 

1990, 2013, and 2014 were collected in August. However, the aboveground biomass data for the 

year 1992 were collected in February. 

Total Growing Juncus Biomass g/m2 

The design plot (Figure 22) shows Total Growing (meaning leaves that were all green) 

Juncus Biomass g/m² related to the factors location, site, and year. The difference among all 

locations had a p = 0.052 (Table 16), which is barely significant. All locations shown in the post-

hoc tests were statistically indistinguishable, although large mathematical differences were seen 

(Table 17). Location 3 had the highest total growing Juncus biomass and 1 had the lowest. 

Locations 3 and 2 were the most similar, followed by locations 2 and 4, and then locations 4 and 

1. The interaction plot (Figure 23) shows a large interaction between year and location, revealing 

a different relationship than Figure 22. The big difference in the interaction plot is locations 1 

and 4 compared to locations 2 and 3 (Figure 23). Locations 1 and 4 had the same trend over the 

years, and locations 2 and 3 had the same trend. Locations 1 and 4 both start out with a high 

Total Growing Juncus Biomass in the year 1990 and drop drastically by the year 2014. These 

two locations are most susceptible to wrack. Locations 2 and 3 maintained relatively constant 

Total Growing Juncus Biomass throughout the years. 
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Figure 22: Mean of total growing J. roemerianus biomass g/m² related to the factors location, 

site, and year. 

 

Table 16: Total growing Juncus biomass g/m². ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 77729 25910 1.70 0.194 

Location 3 136090 45363 2.98 0.052   . 

Site 1 27182 27182 1.78 0.194 

Residuals 24 365955 15248   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 17: Total growing Juncus biomass g/m² data. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 134.19 -42.847 311.2 0.188 

3-1 171.24 -5.797 348.3 0.061 

4-1 69.60 -107.432 246.6 0.708 

3-2 37.05 -139.982 214.1 0.940 

4-2 -64.58 -241.617 112.4 0.753 

4-3 -101.64 -278.667 75.4 0.413 
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Figure 23: Mean of total growing Juncus biomass g/m² over the years 1990, 1992, 2013, and 

2014. 

Total Senescing Juncus Biomass g/m2 

Total Senescing (meaning part green and part brown leaves) Juncus Biomass g/m² was 

related to factors location, site, and year in Figure 24. The difference among locations was 

statistically significant at p<0.0001 (Table 18). Location 1 had the lowest total senescing Juncus 

biomass at 250 g/m2, and location 3 had the highest biomass at 950 g/m2 (Figure 24). There was 

a statistically significant interaction between location and year at the p=0.001 level (Table 19). 

Also, the difference among years was statistically significant at the 0.001 level (Table 18). The 

year 2013 had the highest mean, followed by 1990, then 1992, and 2014 with the lowest. In the 

interaction plot (Figure 25), locations 1 and 4 start out very similar in 1990, with a total 

senescing Juncus biomass ranging between 450 and 550 g/m2. Biomasses at these two locations 

differed by 2013, while locations 2 and 4 became very similar between 700-800 g/m2. By 2014, 

locations 2 and 3 were similar and locations 4 and 1 were similar. 
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Figure 24: Means of total senescing Juncus biomass g/m² related to the factors location, site, and 

year shown in this design plot. 

 

Table 18: Total senescing Juncus biomass g/m². ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 754511 251504 7.27 0.0012 ** 

Location 3 1902091 634030 18.33 < 0.0001 *** 

Site 1 40022 40022 1.16 0.2928 

Residuals 24 830139 34589   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 19: Total senescing Juncus biomass g/m². ANOVA year * location Interaction. 

ANOVA summary for year * location 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 754511 251504 18.9 < 0.0001 *** 

Location 3 1902091 634030 47.7 < 0.0001 *** 

Year:Location 9 657541 73060 5.5 0.0016 ** 

Residuals 16 212620 13289   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Figure 25: Mean of total senescing Juncus biomass g/m² over the years 1990, 1992, 2013, and 

2014. 

Standing Dead Juncus Biomass g/m2 

The design plot shows the Standing Dead Juncus Biomass g/m² related to the factors 

location, site, and year (Figure 26). The difference among locations was statistically significant 

at the p<0.0001 level (Table 20). Location 3’s standing dead biomass was 1500 g/m2, whereas 

the other locations ranged between 550 and 850 g/m2 (Figure 26). Locations 3 and 2, and 

locations 4 and 3 were different from one another, with statistical significance at the 0.01 level 

(Table 21). Locations 3 and 1 were statistically significant in difference at the 0.001 level. Also, 

locations 2, 4 and 1 were all similar, which can be seen in the design plot and post hoc test 

(Figure 26 and Table 21).  
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Figure 26: Mean of standing dead J. roemerianus biomass g/m² related to the factors location, 

site, and year. 

 

Table 20: Standing dead Juncus biomass g/m². ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 964428 321476 2.29 0.10352 

Location 3 3956863 1318954 9.41 0.00027 *** 

Site 1 83285 83285 0.59 0.44827 

Residuals 24 3363144 140131   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

Table 21: Standing dead Juncus biomass g/m². Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 282.3 -259.5 824.1 0.496 

3-1 928.2 386.3 1470.0 0.000 

4-1 167.3 -374.5 709.1 0.834 

3-2 645.9 104.0 1187.7 0.015 

4-2 -115.0 -656.8 426.8 0.937 

4-3 -760.8 -1302.7 -219.0 0.004 
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Total Live Bordering Communities g/m2 

The design plot shows the Total Live Bordering Communities Biomass g/m² related to 

the factors location, site, and year (Figure 27). Location 4 had the highest mean at 460 g/m2, and 

location 3 had the lowest mean of total live biomass of bordering communities at 225 g/m2; 

however, there was no significant difference among them (Figure 27 and Table 22). The 

difference among sites was statistically significant at the 0.01 level (Table 22). This was largely 

because of location 1 site B. However, a further ANOVA including interactions was done and 

showed no significant interaction between year and site. 

 

 
Figure 27: Mean of total live bordering communities’ biomass g/m² related to the factors 

location, site, and year. *There was a slight amount of Juncus found in location 4 site A “out” in 

the year 2013. Note: The data for the year 1992 was not included because it was collected in 

February. All other years were collected in August. 
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Table 22: Total live bordering communities’ biomass g/m². ANOVA summary for year, 

location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 2 7599   3799     0.08 0.925 

Location 3 207148    69049   1.42 0.270    

Site 1 224870   224870     4.64 0.046 * 

Residuals 17 823780    48458                     

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

 
Figure 28: Mean of total live bordering communities biomass g/m² shown over the years 1990, 

1992, 2013, and 2014. Note: The data for the year 1992 was not included because it was 

collected in February. All other years were collected in August. 

 

Standing Dead Bordering Communities g/m2 

The Standing Dead Bordering Communities Biomass g/m² related to the factors location, 

site, and year is shown in the design plot (Figure 29). Location showed significant differences at 

the 0.001 level (Table 23). Location 2 had the highest mean at 575 g/m2, and location 1 had the 

lowest mean of standing dead biomass of bordering communities at 150 g/m2 (Figure 29 and 
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Figure 30). There was significant difference among locations with about a 5 fold difference 

between locations 1 and 2, but it did not show up in the post-hoc test (not shown in a table). This 

may be a result of violating assumptions of ANOVA. For location 2 site A, the median was 

around 400 g/m2. However, there was a very large amount of variation ranging from 0 to 1400 

g/m2 (Figure 31). The difference among years was also significant (Table 23); however, the 

interaction between year and locations was not statistically significant (Table 24). The year 1992 

had a much higher mean for standing dead biomass of bordering communities than the other 

years, which, again may be because the data were collected in February. The next highest mean 

was in the year 1990, then 2013, and 2014. Although the ANOVA interaction between years and 

location was not significant, there is clearly an interaction between the two (Figure 30). 

Locations 3 and 4 started out with a similar biomass at 450 g/m2 in the year 1990. However, by 

the year 2014 locations 2 and 4 had a similar biomass at 200 g/m2 and 1 and 3 had a more similar 

biomass at 75 g/m2 (Figure 30).  
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Figure 29: Mean of standing dead bordering communities’ biomass g/m² related to the factors 

location, site, and year. *There was a slight amount of Juncus found in location 4 site A “out” in 

the year 2013. *Also, year 1992 was sampled in February. All other years were sampled in 

August. 

 

 

 

Table 23: Standing dead bordering communities’ biomass g/m². ANOVA summary for year, 

location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 1665947   555316    12.14 < 0.0001 *** 

Location 3 801836   267279     5.84   0.0038 ** 

Site 1 129352   129352     2.83   0.1056     

Residuals 24 1097880    45745       

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Table 24: Standing dead bordering communities’ biomass g/m². ANOVA year * location 

Interaction. 

ANOVA summary for year * location 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 1665947 555316 14.10 < 0.0001 *** 

Location 3 801836 267279 6.79 0.0037 ** 

Year:Location 9 597017 66335 1.68 0.1739 

Residuals 16 630215 39388   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

 

 
Figure 30: Mean of standing dead bordering communities’ biomass g/m² shown over the years 

1990, 1992, 2013, and 2014. 
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Figure 31: Standing dead bordering communities biomass (g/m²) by site, shown over the years 

1990, 1992, 2013, and 2014. 

 

Other Conditions of Juncus 

Density data on growing Juncus leaves (per m2) and senescing Juncus leaves (per m2), 

and height data on Juncus leaves (cm) are all for “In” samples only. 

Density data on Growing Juncus leaves 

The Total Mean Number of Growing Juncus leaves (>95% green) per m2 was related to 

location, site, and year in the following design plot (Figure 32). The difference among locations 

was not statistically significant (Table 25). Location 3 had the highest mean of growing Juncus 

leaves at 600 leaves per m2 (Figure 32). Location 4 had a mean of 475 leaves per m2, which falls 

right around the overall mean of Juncus leaves (Figure 32). Location 2 had a mean of 425 leaves 

per m2, while location 1 had the lowest mean of 400 leaves per m2 (Figure 32). The difference 

between years and sites were both statistically significant at the p=0.01 level (Table 25). The 
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year 1992 had the highest mean, followed by 1990, then 2013, and 2014 with the lowest (Figure 

32). However, a further ANOVA including interactions was done, and there was no significant 

interaction between year and site (Table 26). 

 

 
Figure 32: Mean of growing Juncus leaves per m2 related to the factors location, site, and year. 

 

 

 

Table 25: The number of growing Juncus leaves per m2. ANOVA summary for year, location, 

and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 505192 168397     3.47   0.027 * 

Location 3 205012    68337     1.41   0.259   

Site 1 247748   247748     5.10   0.031 * 

Residuals 32 554646 48583                      

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Table 26: The number of growing Juncus leaves m². ANOVA year * site Interaction. 

ANOVA summary for year * site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 505192   168397     3.24   0.035 * 

Site 1 247748   247748     4.76   0.037 * 

Year:Site 3 94830    31610     0.61   0.615   

Residuals 32 1664828    52026   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

Density data on Senescing Juncus leaves 

The Total Mean Number of Senescing Juncus leaves (<95% and >0% green) per m2 was 

related to factors location, site, and year in the following design plot (Figure 33). The difference 

among locations differed statistically at only p=0.046 level. Location 3 had the highest mean 

number of senescing Juncus leaves at 550 per m2, and location 2 had a mean number of 425 

leaves per m2. Locations 1 and 4 had the lowest and very similar mean number of senescing 

Juncus leaves at 350 leaves per m2 (Figure 33). The difference among years was statistically 

significant at the p<0.0001 level (Table 27). The year 1990 had the highest mean, followed by 

1992, then 2013, and 2014 with the lowest (Figure 33). There was no significant interaction 

between year and location (Table 28). 
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Figure 33: Mean of senescing Juncus leaves per m2 related to the factors location, site, and year. 

 

 

Table 27: The number of senescing Juncus leaves. ANOVA summary for year, location, site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 1165086   388362    12.18 < 0.0001 *** 

Location 3 285294    95098     2.98    0.046 *   

Site 1 146410   146410     4.59    0.040 *   

Residuals 32 1020374    31887   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 28: The number of senescing Juncus leaves m². ANOVA year * location Interaction. 

ANOVA summary for year * location 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 1165086   388362     9.19 0.00032 *** 

Location 3 285294    95098     2.25 0.10847     

Year:Location 9 152040    16893     0.40 0.92302     

Residuals 24 1014744    42281        

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Height data on Juncus 

The Total Height (cm) of Juncus leaves (growing and senescing) was related to factors 

location, site, and year in the following design plot (Figure 34). The difference among locations 

showed statistically significant differences at the p<0.0001 level (Table 29). Locations 4 and 3, 

and locations 4 and 2 differed statistically at p = 0.05 (Table 31). Locations 3, 2 and 1 had 

similar Juncus heights at 125 to 135 cm. Location 1 and location 4 had similar Juncus heights at 

115 to 125 cm (Figure 34). The difference among years were also statistically significant at the 

p<0.0001 level (Table 29). The year 1990 had the highest mean, followed by 1992, then 2014, 

and 2013 with the lowest (Figure 34). However, the interaction between year and location was 

not statistically significant (Table 30). 

 

 
Figure 34: Total height of Juncus leaves (cm) related to the factors location, site, and year. 
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Table 29: Total height of Juncus leaves. ANOVA summary for year, location, and site. 

ANOVA summary for year + location + site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 722931 240977 263.32 < 0.0001 *** 

Location 3 61816 20605 22.52 < 0.0001 *** 

Site 1 1563         1563 1.71      0.19     

Residuals 734 671708 915   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 30: Total height of Juncus leaves. ANOVA year * location Interaction.  

ANOVA summary for year * location 

 Df Sum Sq Mean Sq F value Pr(>F) 

Year 3 722931 240977 264.14 < 0.0001 *** 

Location 3 61816 20605 22.59 < 0.0001 *** 

Year:Location 9 10923 1214 1.33 0.22 

Residuals 726 662348 912   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 31: Total height of Juncus leaves. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 5.111   -7.0446 17.2664 0.700 

3-1 11.227   -0.9286 23.3825 0.082 

4-1 -6.781 -18.8542   5.2919 0.471 

3-2 6.116   -5.3974 17.6295 0.520 

4-2 -11.892 -23.3184 -0.4657 0.038 

4-3 -18.008 -29.4344 -6.5818 0.000 

 

Site Characterization  

This section describes results for the 4 locations related to environmental factors listed in 

my conceptual model: water depth, salinity, macro-organic matter (MOM), and elevation. 

Water Depth   

The design plot shows data for mean water level, in cm, relative to the surface (i.e., 

horizontal line) (Figure 35). Individual locations acted differently from one another (p<0.001) 

(Table 32). Location 2 had the highest mean water level relative to the surface averaged over all 
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of the months at 3 cm, and location 4 had the lowest at -2 cm) (Figure 35). Location 3 had a 

relative water level right around the surface level at 0 cm. Location 1 had a mean water level 

slightly lower than the surface around -0.5 cm. Months acted differently from one another, and 

were statistically significantly different at the p<0.0001 level (Table 32). It is shown that the 

summer months, June and July, had a lower mean water level relative to the surface compared to 

other data. The fall month, November, had the highest mean water level relative to the surface. 

The interaction between location and month was statistically significant at the p<0.0001 level 

(Table 33). The interaction plot (Figure 36) shows a large interaction between months and 

location, revealing a different relationship than Figure 35. The big difference in the interaction 

plot was locations 1 and 4 compared to locations 2 and 3 (Figure 36). 

 

 
Figure 35: Response variable: relative water level (cm) and the explanatory variables: month, 

site, and location. 
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Table 32: Water level relative to the surface. ANOVA summary for locations, month in 2014, 

sites, in/out. 

ANOVA summary for locations + month in 2014 + sites + in/out 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 360 119.9 14.36 < 0.0001 *** 

Month in 2014 5 502 100.5 12.04 < 0.0001 *** 

Site 1 20 20.4 2.45 0.12 

In.Out 1 14 14.1 1.69 0.20 

Residuals 85 709 8.3   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 33: Water level relative to the surface. ANOVA month * location Interaction. 

ANOVA summary for location * month 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 360 119.9 27.26 < 0.0001 *** 

Month 5 502 100.5 22.85 < 0.0001 *** 

Location:Month 15 427 28.5 6.48 < 0.0001 *** 

Residuals 72 317 4.4   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

 
Figure 36: Mean of relative water level (cm) over the months in the year 2014 May, June, July, 

August, September, and November. 



 

77 

 

Salinity  

The mean of salinity at UPC is shown in the design plot (Figure 37). The difference 

among location salinity levels was statistically significant at the p<0.0001 level (Table 34). 

Locations 2 and 3 both have around 12 salinity (Figure 37). Location 1 had the highest salinity at 

28 averaged over all of the months, followed by location 4 at 23. The difference among the 

months in 2014 were statistically significant at the p<0.0001 level (Table 34). November had the 

highest mean of salinity followed by July, September, August, and then June. The lowest mean 

of salinity occurred during the month of May (Figure 37). The interaction between month and 

location was statistically significant (p<0.0001) (Table 35) as shown in the interaction plot 

(Figure 38). The big difference in the interaction plot was locations 1 and 4 compared to 

locations 2 and 3 (Figure 38). In May, location 1 had a salinity level of 23, and location 4 had a 

salinity level of 16. They both increased in salinity level over time. By the month of November 

location 1 was at 35, and location 4 was at 33. In May, location 2 had a salinity level of 12, and 

location 3 had a salinity level of 8. They both increased in salinity over time with major peaks in 

July and then decrease. By the month of November, salinity rose again slightly; location 2 was at 

15, and location 3 was at 17. 
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Figure 37: Response variable: mean of salinity and the explanatory variables: month (2014), 

site, and location. 

 

Table 34: Salinity level data. ANOVA summary for locations, month in 2014, sites, in/out. 

ANOVA summary for locations + month in 2014 + sites + in/out 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 3855 1285 50.81 < 0.0001 *** 

Month in 2014 5 1071 214 8.47 < 0.0001 *** 

Site 1 7 7 0.26 0.61 

In/Out 1 9 9 0.35 0.56 

Residuals 85 2150 25   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 35: Salinity level data. ANOVA month * location Interaction. 

ANOVA summary for month * location 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 3855 1285 121.39 < 0.0001 *** 

Month 5 1071 214 20.23 < 0.0001 *** 

Location:Month 15 1403 94 8.83 < 0.0001 *** 

Residuals 72 762 11   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Figure 38: Mean of salinity shown over the months in the year 2014 May, June, July, August, 

September, and November. 

 

Soil Bulk Density 

The means of the soil bulk density (g/cm3) are shown in a design plot (Figure 39). The 

difference among location soil bulk density levels was statistically significant at the p<0.0001 

level (Table 36). Location 1 was statistically significant in difference from all of the other 

locations (Table 38), with a higher soil bulk density of 0.7 g/cm3 (Figure 39). Locations 2, 3, and 

4 had similar soil bulk densities (Table 38), ranging between 0.1 to 0.3 g/cm3 with location 3 

being the lowest (Figure 39). Also, there was a lot of variation at location 1 between sites A and 

B (Figure 40). The sites were statistically significant in difference at the p=0.001 level (Table 

36). There was a significant interaction between location and site at the p<0.0001 level (Table 

37). 
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Figure 39: Response variable: mean of soil bulk density (g/cm3) and the explanatory variables: 

year location, site, and in/out. 

 

 

Table 36: Soil bulk density data. ANOVA summary for locations, year, sites, and in/out. 

ANOVA summary for location + year + site + in/out 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 3.01 1.003 14.24 < 0.0001 *** 

Year 3 0.29 0.095 1.35 0.2679 

Site 1 0.57 0.575 8.16 0.0061  ** 

In/Out 1 0.00 0.001 0.01 0.9166 

Residuals 53 3.73 0.070   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

 

Table 37: Soil bulk density data. ANOVA location * site Interaction. 

ANOVA summary for location * site 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 3.009    1.003     35.0 < 0.0001 *** 

Site 1 0.575    0.575     20.1 < 0.0001 *** 

Location:Site 3 2.474    0.825     28.8 < 0.0001 *** 

Residuals 54 1.546    0.029                   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Table 38: Soil bulk density data. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 -0.49900 -0.7622 -0.2358 0.000 

3-1 -0.56063 -0.8331 -0.2882 0.000 

4-1 -0.42325 -0.6865 -0.1600 0.000 

3-2 -0.06163 -0.3341 0.2108 0.932 

4-2 0.07575 -0.1875 0.3390 0.872 

4-3 0.13738 -0.1351 0.4098 0.546 

 

 
Figure 40: Boxplot for the response variable: soil bulk density (g/cm3) defined by the 

explanatory variable: location. Soil bulk density (assessed over the 4 years: 1990, 1991, 1992, 

and 2014) at each location in the marsh.  

 

Macro-organic matter (MOM) 

The design plot shows the means of the MOM (g ash free dry mass /m2 to 10 cm) with 

respect to explanatory variables (Figure 41). Individual locations acted differently from one 

another and showed a statistical significance at the p<0.0001 level (Table 39). Location 2 had the 

highest mean at 4250 g/m2, while location 1 had the lowest at 2500 g/m2 (Figure 41). Locations 3 

and 4 were the most similar (p=0.265), followed by locations 1 and 4 (p=0.160) (Table 41). Also, 

the “in” and “out” sites were statistically different at the p<0.0001 level (Table 41). However, 
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there was no statistically significant interaction between location and the in/out sites (Table 40) 

with areas outside the original Juncus patch having more MOM than inside. 

  

 
Figure 41: An overall look at the relationship between the response variable: mean of MOM to 

10 cm AF (g/cm2) and the explanatory variables: year location, site, and in/out. 

 

 

Table 39: MOM data. ANOVA summary for locations, year, sites, and in/out. 

ANOVA summary for locations + sites + in/out 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 53257629 17752543 20.03 < 0.0001 *** 

Year 3 2114810 704937 0.80 0.50 

Site 1 1015790 1015790 1.15 0.29 

In/Out 1 35901291 35901291 40.50 < 0.0001 *** 

Residuals 104 92181241 886358   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 
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Table 40: MOM data. ANOVA location * in/out Interaction. 

ANOVA summary for location * in/out 

 Df Sum Sq Mean Sq F value Pr(>F) 

Location 3 53257629 17752543     20.32 < 0.0001 *** 

In.Out 1 35923922 35923922 41.12 < 0.0001 *** 

Location:In/Out 3 3546590 1182197 1.35 0.26 

Residuals 105 91742619 873739                   

Significant codes: 0 = *** 0.001 = ** 0.01 = * 0.05 = . 

 

Table 41: MOM data. Post-hoc test for locations. 

Location Difference Lower 95% CI Upper 95% CI P Value adjusted 

2-1 1858.2 1099.8 2616.67 0.000 

3-1 1147.3 388.8 1905.75 0.001 

4-1 610.4 -148.0 1368.89 0.160 

3-2 -710.9 -1476.0 54.15 0.079 

4-2 -1247.8 -2012.9 -482.71 0.000 

4-3 -536.9 -1301.9 228.22 0.265 

 

Rates 

Rates of Horizontal Movement for Last Continuous Juncus 

Rates of horizontal movement were calculated for each measure Juncus position. The rate 

calculations are from the slope of the regression of position versus year (Table 42). The year’s 

column shows the period of years it took for each location to reach the first column maximum of 

20 grids. For locations that did not reach 20 grid units, a regression was done on the whole time 

period. Location 4 site A had the greatest rate at 17.0 cm/y for the period of years 1990 to 1992. 

This location is different from the rest in that it reached the outer limit of Juncus very quickly. 

Location 2 site B had the next highest rate, reaching the outer limit at a rate of 7.1 cm/y for the 

years 1990 to 2000. Location 4 site B was next to reach the outer limit at a rate of 6.9 cm/y for 

the years 1990-2000, followed by location 2 site A with a rate of 4.4 cm/y for the years 1990 to 

2010. Location 3 site A (rate of 2.6 cm/y for 1990 to 2014) and location 3 site B (rate of 1.8 cm/y 

for 1990 to 2014) had lower rates than locations 2 and 4. Location 1 site A had the lowest rates at 
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-1.1 cm/y for the years 1990-2014. Location 1 site B had a rate of 3.8 cm/y for the period of 

years 1995-2014. Location 1 site B was different in that there was a huge dip from 1994 to early 

2000s because of wrack; therefore, the regression was calculated on the years 1995-2014. These 

periods of years were used to show that there was growth at this low marsh site even after 

disturbance. However, location 1A had a bigger decrease and was more consistent over time. 

Locations 2, 3, and 4 all had rates that continued to move outward, and location 1 had a rate of 

change that moved inward. 

 

Table 42: Last continuous Juncus data. Regression, r2, rates (cm/y), and years for each location 

and site. 

 Last Continuous Juncus 

Location Site Regression r2 Rate (cm/y) Years 

1 A y = -0.1105x + 10.588 0.6442 -1.1 1990-2014 

1 B y = 0.3815x + 1.2942 0.8311 3.8 1995-2014 

2 A y = 0.4442x + 9.6762 0.9707 4.4 1990-2010 

2 B y = 0.7109x + 8.4982 0.9554 7.1 1990-2000 

3 A y = 0.2646x + 8.6256 0.891 2.6 1990-2014 

3 B y = 0.1804x + 8.8101 0.7171 1.8 1990-2014 

4 A y = 1.7x + 11.4 0.8576 17.0 1990-1992 

4 B y = 0.6918x + 7.7127 0.9045 6.9 1990-2000 

*Rate calculations are from slope (grid/year x 10 cm) 

 

Rates of Horizontal Movement for 3-m wide Juncus patch borders 

Average distances (cm) and rates for horizontal movement (cm/y) are shown for the 3-m 

wide Juncus border data for each location and site (Table 43). Average distance was divided by 

the number of years of the study (i.e., 24 years) in order to obtain the rate (cm/y). Location 4 

moved at the fastest overall rate (site A at 12.8 cm/y, and site B at 7.5 cm/y), followed by 

location 2 (site A at 4.1 cm/y site B at 7.9 cm/y). Locations 1 and 3 moved much slower, both 

with one site moving inward. Location 1 site A had a rate of -0.004 cm/y, and location 1 site B 
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had a rate of 0.8 cm/y. Location 3 site A had a rate of 0.7 cm/y, and location 3 site B had a rate 

of -0.004 cm/y. 

Table 43: Average distances (cm) and rates (cm/y) for each location and site from initial 3-m 

border. 

Location Site Average Distance (cm) Rate (cm/y) 

1 A -0.09 -0.004 

1 B 20.00 0.8 

2 A 98.82 4.1 

2 B 189.82 7.9 

3 A 16.36 0.7 

3 B -0.09 -0.004 

4 A 307.27 12.8 

4 B 180.91 7.5 

 
 

Rates of Horizontal Movement for Transect Study 

Rates for horizontal movement (cm/y) were calculated for the transect study by Floyd 

(2007) (Table 15). The average distances from each area in 2014 were calculated, and then each 

distance was divided by the number of years between the measurement and the set up date (i.e., 

10 years) to obtain the rate (cm/y) (Table 44). The group of transects near location 2 moved at 

the fastest rate (15.0 cm/y), and the group of transects near location 1 moved at the slowest rate 

(5.9 cm/y). The group of transects in the transition zone moved at a rate of 12.2 cm/y, which is 

between that of the other two groups, but with a higher standard deviation than any of the other 

groups. 
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Table 44: Measurements (cm), means (cm), standard deviations (cm), and rates (cm/y) for each 

transect group. 

Transect Location 

Measurement 

(cm) Mean (cm) 

Standard 

Deviation (cm) Rate (cm/y) 

1 Transition 125 121.7 85.0 12.2 ± 8.5 

2   205       

3   35       

4 Near 1 125 58.7 62.9 5.9  ± 6.3 

5   0       

6   51       

7 Near 2 170 149.0 54.6 15.0  ± 5.5 

8   87       

9   190       

Rates of Horizontal Movement for Ground Cover for Juncus 

For each location and site for the Ground Cover data, a regression line, r2, rates (dm2/y 

converted to cm/y), and period of years are shown (Table 45). The same periods of years for 

each location and site were used for these data as were for the Last Continuous Juncus data. 

Location 4 had the highest overall rates of increase in grids (and corresponding distance) 

containing Juncus per year (site A at 16.5 cm/y, and site B at 5.4 cm/y), followed by location 2 

(site A at 4.5 cm/y site B at 7.0 cm/y). Locations 1 and 3 had lower rates of grids containing 

Juncus per year. Location 3 site A had a rate of 2.8 cm/y, and location 3 site B had a rate of 1.9 

cm/y. Location 1 site A had a rate of -1.2 cm/y, and location 1 site B had a rate of 2.0 cm/y. This 

location (location 1) experienced inward movement, because there was major wrack impact 

there. Again, location 1 site B was different in that there was a big period of inward movement 

from 1994 to early 2000s. Therefore, the regression was calculated on the years 1995-2014 to 

show growth at this site even after disturbance. Locations 2, 3, and 4 all had rates continuing to 

move out, and location 1 had a rate of change that continues moving inward. 

 

 



 

87 

 

Table 45: Permanent plot data – Ground cover for Juncus. Regression equation, r2, rates (dm2/(m 

x y) converted to cm/y), and years for each location and site. 

Location Site Regression r² Rate (dm²/(m x y) Rate (cm/y) Years 

1 A y = -1.1923x + 104.82 0.6949 -1.1923 -1.2 1990-2014 

1 B y = 1.9549x + 0.3737 0.6136 1.9549 2.0 1995-2014 

2 A y = 4.487x + 95.167 0.9727 4.4870 4.5 1990-2010 

2 B y = 7x + 84.909 0.9481 7.0000 7.0 1990-2000 

3 A y = 2.7642x + 84.018 0.8988 2.7642 2.8 1990-2014 

3 B y = 1.877x + 86.053 0.7331 1.8770 1.9 1990-2014 

4 A y = 16.5x + 100.33 0.9997 16.5000 16.5 1990-1992 

4 B y = 5.3636x + 85.091 0.7726 5.3636 5.4 1990-2000 

*Rate calculations are from the slope of the line (dm2/m/year divided by 10 dm/m times 10 

cm/dm to get cm/y). 

 

 



 

 

DISCUSSION 

Summary of Variables of Conceptual Model 

My conceptual model showed how various environmental factors were linked to J. 

roemerianus patches and their borders (Figure 1). Changes in J. roemerianus patch size vary 

among hydrogeomorphic locations related to differences among those locations. Differences in 

horizontal movement of Juncus patch borders were predicted among the four hydrogeomorphic 

locations within the salt marsh. Patch border dynamics involved the interaction among the 

conditions of Juncus, bordering communities, and disturbances and stresses related to 

environmental conditions (hydroperiod, salinity, wrack, and soil organic matter) and 

environmental drivers (precipitation patterns, tidal flooding, elevation, and storminess). My 

study helps to better understand the geomorphic setting and context for Juncus and helps track 

community changes and environmental factors associated with patches of this plant. Again, this 

is the first time that rates of horizontal movement of Juncus and ecosystem state changes have 

been assessed in this way. It also helps understanding of the long-term effect of sea-level rise 

versus wrack disturbance. 

Summary of Results – Rates of Change for Horizontal Movement 

Although there have been studies that address patches and patterns of J. roemerianus 

(Eleuterius, 1984; Christian et al. 1990; Brinson and Christian, 1999; Christian et al. 2000; 

Touchette, 2006), to my knowledge, there are no studies on the horizontal movement of Juncus 

at the scale in which I studied. There were different ways of determining the various rates of 

horizontal movement. The rates discussed included last continuous Juncus (cm/y), 3-m wide 

Juncus border (cm/y), Transects (cm/y), and Juncus ground cover (cm/y) (Table 46).  All three 

methods for the permanent plots showed overall horizontal rates of movement ranking from 
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highest within the high marsh near the creek (location 4) to the high marsh away from the creek 

(location 2) to the subsiding high marsh (location 3) to the low marsh (location 1) (Table 46). 

Each method provided a different perspective on horizontal movement.  The last 

continuous Juncus (LCJ) data was within the 1 x 2 m plots and had a maximum outer limit 

measurement of 20 grid units (dm). Because of this, some of the Juncus points were not detected 

that others on the 3-m wide border approach did. The LCJ data only highlight the Juncus that 

was continuous; therefore, if there were small patches of Juncus more inward or outward this 

Juncus would not be noted in this data set.  

The Juncus ground cover data came from the same data set as the LCJ data. The Juncus 

ground cover was also measured within the 1 x 2 m plots, but had a maximum outer limit 

measurement of 200 grid units (dm2). These data showed some of the Juncus dynamics gone 

undetected in the LCJ data set. Also, for these data, some Juncus was not detected that the 3-m 

wide border approach picked up. 

The 3-m wide Juncus border data determined rates by calculating the average distances 

for each location/site over the 24 year period. These data went outside of the 1 x 2 m plots, 

therefore determined rates based on a larger area (3-m wide border) of the marsh. Although these 

data are shown as a whole and over a longer time period, the rates still largely agree with the 1 x 

2 m plots. Also, the larger scale approach demonstrated an edge effect to the 1 x 2 m plots from 

sampling. 

The rates of movement for the transect data were much faster than the other rates. These 

data were calculated over the last 10 years (2004-2014), and were in locations away from the 

permanent plots. However, the ranking of rates from the neighboring permanent plots (locations 

1 and 2) were the same as these. The group of transects near location 1 had the slowest rate (5.9 
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cm/y) of horizontal movement for Juncus, and the group of transects near location 2 had the 

fastest rate (15.0 cm/y) of horizontal movement. The other group of transects were located in the 

transition zone, between locations 1 and 2. These rates were in between that of the other two 

(12.2 cm/y). These data indicate rapid horizontal growth in the transition zone. My location 4 is 

in a transitional zone, and the transect data from the transitional area may support the findings 

there.  

Table 46: Rates of change for horizontal movement for last continuous Juncus (cm/y), Juncus 3-

m wide border (cm/y), and Juncus ground cover (dm2/y). 

Rates of Horizontal Movement: 
Location 

1 2 3 4 

Last Continuous Juncus (cm/y) -1.1 – 3.8 4.4 – 7.1 1.8 – 2.6 6.9 – 17.0 

Juncus 3-m Wide Border (cm/y) -0.004 – 0.8 4.1 – 7.9 -0.004 – 0.7 7.5 – 12.8 

Juncus Ground cover (cm/y) -1.2 – 2.0 4.5 – 7.0 1.9 – 2.8 5.4 – 16.5 

 

Explaining Horizontal Movement at Each Hydrogeomorphic Position (Location) 

The following section summarizes the interrelationship among hydrogeomorphic position 

and horizontal movement of Juncus through the perspective of my conceptual model (Figure 1).  

Table 47 provides an overview of variables associated with the components of the conceptual 

model. As in Brinson and Christian (1999), the boundary between patches of J. roemerianus and 

other types of saltmarsh species was observed. The horizontal movement factors (last continuous 

Juncus, 3-m wide Juncus border, and ground cover for Juncus) showed significant interactions 

and/or statistically significant post hoc ratings (Table 47). The location with the highest three 

methods of horizontal movement was location 4, followed by location 2, location 3, and then 

location 1 (Table 46). Brinson and Christian (1999) and my study found that in the low marsh, 

patches shrunk from being hit by wrack. In high marsh areas patches of Juncus grew horizontally 

unless they were hit by wrack or bordering a hollow. More details of each of the four 

hydrogeomorphic locations follow. 
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Table 47: Significant interactions and statistically significant post-hoc rankings. For post-hoc 

rankings, the highest is “a” and the lowest is “c.”  

 UPC Location 

 1 2 3 4 

Horizontal movement 

Last Continuous Juncus Significant year*location interaction 

Juncus 3-m Wide Border C b c a 

Ground Cover for Juncus Significant year*location interaction 

Condition of Juncus 

Total Growing Juncus Biomass A a a  a  

Total Senescing Juncus Biomass Significant year*location interaction 

Standing Dead Juncus Biomass B b a b 

Number of Growing Juncus Leaves No significant interactions 

Number of Senescing Juncus Leaves No significant interactions 

Total Height of Juncus Leaves Ab a a b 

Bordering Communities 

Total Live Bordering Communities No significant interactions 

Standing Dead Bordering Communities A a a a 

Environmental Conditions 

Ground Cover for Wrack Significant year*location interaction 

Water Depth   Significant month*location interaction 

Salinity  Significant month*location interaction 

Soil Bulk Density   Significant location*site interaction 

MOM – Ash Free Dry Mass C a ab bc 

 

High marsh – away from creek – Location 2 

The high marsh away from the creek had the 2nd most growing, senescing, and dead 

Juncus biomass (Figures 22, 24, and 26), which supports Brinson and Christian (1999). This is 

due to the little amount of wrack, distance from the tidal creek, little tidal flooding, and lower 

salinity levels. Horizontal growth and movement of Juncus outwards is occurring at location 2, 

reaching the outer limit of the 1 x 2 m plots (Figures 8 and 21). This high marsh away from creek 

study site had the overall 2nd fastest rate of horizontal movement (Table 46), with site B reaching 

the outer limit during 2005 through 2014 (Figures 8 and 21). Also, the Juncus patches are 

expanding slowly. Like location 3, wrack deposition doesn’t seem to have as big as an effect at 



 

92 

 

location 2 as it does at locations 1 and 4 (Figures 15, 17, and 18), partly because “wrack” in this 

location is mostly litter (Brinson and Christian, 1999). 

The conditions of Juncus variables from my study include: total growing Juncus biomass, 

total senescing Juncus biomass, standing dead Juncus biomass, number of growing Juncus 

leaves, number of senescing Juncus leaves, and the total height of Juncus leaves (Table 47). All 

of these aspects of Juncus were postulated to have an effect on patch border dynamics with more 

robust condition promoting horizontal growth. The total growing Juncus biomass, the number of 

growing Juncus leaves, and the number of senescing Juncus leaves were similar across the four 

locations (Table 47). Juncus is most commonly found in high marshes with less frequent 

flooding and less salty soils (Weis and Butler, 2009; Wiegert and Freeman, 1990). The leaves in 

high marsh zones are said to have higher biomass, and be denser and taller than when found in 

low marshes (Williams & Murdoch, 1972; Eleuterius, 1975, Eleuterius and Caldwell, 1981; 

Higinbotham et al., 2004). Although there are no consistent trends with the conditions of Juncus 

(Table 47), these studies are supported by my high marsh away from creek location (as well as 

the high marsh near a pond location) for total growing Juncus biomass and height. Also, this 

location 2 (and location 3) had total growing Juncus biomass that stayed high across all of the 

years, whereas locations 1 and 4 did not. 

Bordering plant communities associated with J. roemerianus have also been studied 

(Brinson and Christian, 1999; Keusenkothen and Christian, 2004). In the study by Brinson and 

Christian (1999), the high marsh away from the creek had the highest biomass for bordering 

communities. However, the biomass for these communities decreased over the last few years, 

and had the 2nd highest live biomass for bordering communities in 2014 (Figure 27). Both S. 

patens and D. spicata were present in 1990 within the 1 x 2 m plot as bordering communities, 
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but have disappeared over the 24 years (within the 1 x 2 m plots) to be completely overcome by 

Juncus. Outside of the 1 x 2 m plot, S. patens and D. spicata are still present as bordering 

species. The black needlerush is the dominant species at this location, however; no S. alterniflora 

has ever been present (Brinson and Christian, 1999). This is likely because of the absence of bare 

areas and a very minimal amount of wrack (with much more litter present) at location 2 in earlier 

years (Brinson and Christian, 1999).  

The biomass of bordering communities of J. roemerianus have a tendency to rise as 

salinity levels within the water decline (Woerner and Hackney, 1997). This high marsh location 

away from the creek had the highest mean water level relative to the surface (Figure 35) and the 

lowest mean salinity, tied with location 3 (Figure 37). Stasavich (1998) had a study site very 

similar to my location 2. At the high marsh location, away from the creek (location 2), there is 

little tidal flooding as determined from Stasavich (1998) and Christian et al. (2000). At her study 

sites hydrodynamics were very irregular. During the winter the high marsh flooded above the 

surface level, and during the summer the water depth reached 1 m below the surface level. The 

tidal flooding at this location (similar to location 3) are flooded with lower salinities, especially 

in the winter months when water levels are higher (Christian et al. 1990). My location 2 also had 

the highest MOM values (Figure 41) and the next to lowest mean of soil bulk density (Figure 39) 

(Brinson and Christian, 1999). The soil in this location is peaty, and the edaphic factors are very 

similar to location 3. Many of the environmental factors are very similar to location 3, indicating 

that location 2 could become like location 3 over time. Also, an increase in bare areas was 

noticed in the last 15 years, probably because of the low sediment supplies, which is widespread 

at VCR marshes (Brinson et al. 1995). Because of these bare areas there may be some other 

species, like S. alterniflora, seen in the next few years (as in location 3). The transition of 
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location 2 to be more like location 3 over time may be caused by disturbances like sea-level rise 

and inundation (Brinson et al. 1995; Christian et al. 2000). 

Precipitation, tidal flooding, and groundwater were three hydrologic sources identified in 

Stasavich (1998). Precipitation events were mainly the dominant source for hydrologic inputs 

belowground, almost always producing a rise in ground flooding (Stasavich, 1998). Hayden et al. 

(1995) studied geomorphological controls, such as storminess, at the VCR. They stated that 

during nor’easters and tropical storms, water levels are critical causes of raising land surface 

elevations through the transportation of inorganic sediments above the mean sea level. Also 

contributing to ecosystem state changes at the VCR is below ground organic matter 

accumulation (Blum and Christian, 2004) which alters land elevation. Storms bringing wrack 

deposition did not seem to have as much of an impact at location 2 as it did at other locations 

(Figure 15).  

High marsh – near pond – Location 3  

The subsiding marsh location is unique in that it has undergone a transition to an open 

pond, which lacks emergent plants (Brinson and Christian, 1999). This location is in a high 

marsh area but had the lowest elevation because subsidence is occurring, and the Juncus is 

bordering a pond. The elevations at this location vary greatly, and as patches of this organic rich 

soil subside, this location reflects a hummock and hollow landscape. These hollows may have 

been formed because of muskrat activity through foraging and building of trails and burrows 

(Brinson and Christian, 1999; Christian et al. 2000). Also, location 3 gets flooded merely during 

extreme high tides and storm tides. As this occurs the hollows get filled by water lasting 

throughout most of the year (Brinson and Christian, 1999; Christian et al. 2000). Therefore; 

hollow and hummock formation restricts movement in this high marsh.  The lower elevation of 
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the pond prevents extension of patches, but patch borders do not seem to erode significantly even 

under these conditions (Christian et al. 2000; Brinson et al. 1995). 

Bertness and Ellison (1987) state that wrack increases with lower marsh elevations. They 

described areas in the marsh that were lowest at the edges and highest in high marshes. Given 

this, the most wrack disturbance would be at location 3, which had the lowest elevation of the 

four locations at 1.18 m (Table 1). My study may show different results because of the 

subsidence and pond formation occurring at location 3, as well as its distance from tidal waters 

(Brinson and Christian, 1999). However, my low marsh (location 1) study site would agree with 

the study by Bertness and Ellison (1987) because this location has shown the greatest impact 

from wrack disturbance. 

This subsiding high marsh had the most growing, senescing, and dead Juncus biomass 

(Figures 22, 24, and 26), continuing what was found by Brinson and Christian (1999). But this 

robust condition does not translate into horizontal growth. The neighboring pond limits the 

horizontal growth of Juncus outwards to none or very little. As a result, location 3 had the next to 

slowest rate of horizontal movement overall (Table 46). Also, wrack deposition has been low 

over the 24 years at this location (Figures 13 and 15), and doesn’t seem to play as big of a role as 

it does in other locations (Brinson and Christian, 1999). It is possible that the pond developed 

earlier from wrack deposition, but my evidence is not supportive of this. 

The largest amount of Juncus growth at the subsiding high marsh location seems quite 

stable, which supports that of Brinson and Christian (1999). In 1990, there was less pond in this 

location, but it grew into the 1 x 2 m plot at the expense of the neighboring community. Juncus 

on the other hand did not show any erosion and has remained stable. Although the pond is 

bordering the Juncus at the original boundary line, there still aren’t as many other species to 
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compete with Juncus at this location as there are at others. In areas where the black needlerush is 

dominate, Spartina alterniflora is found at lower densities; however, if Juncus is removed then 

this smooth cordgrass showed excellence in its performance, by increasing in density, signifying 

that growth is restricted by competition from J. roemerianus (Skaradek and Henson, 2007). The 

bordering communities outside of the permanent plot consist of S. alterniflora, S. patens, and D. 

spicata. This location 3 had the lowest mean of total live biomass for the bordering communities 

(175 g/m2), which is half of that of location 4 at 350 g/m2 (Figure 27). Location 3 also contains 

many bare areas within the 1 x 2 m plots, as a result of the subsidence (Brinson and Christian, 

1999).  

Overall, at location 3, the storms that occurred throughout my study didn’t seem to bring 

as much wrack to this location as it did to others (Figure 13). Also, wrack deposition did result 

from a nor’easter in 1994 that caused an increase in the number of grids containing bare areas. 

Bare areas may be caused by stress from periodic flooding and aerobic decomposition of soil 

organic matter when the surface of the soil gets exposed directly to the atmosphere (Brinson and 

Christian, 1999). 

In the subsiding high marsh, there is not much tidal flooding because of the distance from 

a tidal source, which is supported by Stasavich (1998) and Christian et al. (2000). As in 

Stasavich (1998), the hydrodynamics were very irregular. Because of the subsidence occurring at 

location 3, it does have the 2nd highest mean water level relative to the surface, right at the 

ground surface level (Figure 35). It has the lowest salinity level, tied with location 2 (Figure 37), 

partly because of the higher water levels during winter months (Christian et al. 1990). Roberts 

(2000) and Buck (2001) both had study sites at the VCR that were very closely related to my 

location 3. Their study sites resembled a hollow and hummock marsh area. Roberts (2000) 
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measured monthly precipitation, groundwater depth, and groundwater salinity at a UPC site 

similar to my location 3. Buck (2001) also measured water levels, interstitial water salinity, and 

precipitation at the same site. Both Roberts (2000) and Buck (2001) found that this area had high 

relative water level, and low averages of salinity. They also stated that their studies showed a 

significant differences among sites. They found that sites in summer months, like June, 

experienced low relative water levels, high ground water salinity, and little precipitation. All of 

these data support and extend the results of my location 3 data. Also, this location had the lowest 

mean of soil bulk density (Figure 39), and the 2nd highest mean of MOM (Figure 41) which 

supports Brinson and Christian (1999). These edaphic conditions indicate that the soil in location 

3 is peaty (which is similar to that of location 2). 

The low soil bulk density and macro-organic matter factors play a major role in location 

3 having the next to slowest rate of horizontal movement (Table 46). The peaty nature of this 

marsh is similar to location 2, which has rapid growth. However, at this location the pond stops 

the horizontal growth. Wetlands, such as salt marshes, will experience collapsing and internal 

breakup of the marsh (Cahoon et al. 2009). This relates to my study at UPC in Virginia, 

specifically location 3 where subsidence has occurred. This also may be known as an eroding 

marsh. When the elevations are lower (as in my location 3), then sea-level rise will have more of 

a negative impact on plant communities (Gesch et al., 2009). Also, Juncus is thought to be able 

to persist over many more years because of the way it has maintained itself next to the hollow.  

This subsidence occurring at location 3 is prevalent at VCR marshes because of the low sediment 

supplies (Brinson et al. 1995). Brinson et al. (1995) and Christian et al. (2000) both studied 

ecosystem stage changes, with aspects focusing on the internal breakup and eroding of marshes 

at the VCR. These marsh transitions occur because of disturbances such as rising sea level, 
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flooding regimes, and wrack deposition (Brinson et al. 1995; Christian et al. 2000).  In addition, 

the resistance of Juncus during this erosional process may be what allows Juncus to persist in the 

low marsh. 

High marsh – near creek – Location 4 

This high marsh near a creek location is unique in that it is in a transition zone from a 

high marsh to a low marsh. It had the next to lowest growing, senescing, and dead Juncus 

biomass in my study (Figures 22, 24, and 26), as well as in the study by Brinson and Christian 

(1999). However, as in location 1, the numbers in 2013 and 2014 were even lower than they 

were in 1990 and 1992 (Figure 23), which could be related to wrack deposition from storms 

(Brinson and Christian, 1999). Wrack disturbance is one of the most important aspects of my 

study; and in most locations where it occurred, it caused decreases in outward horizontal 

movement. My work supports and extends that of Brinson and Christian (1999) and Tolley and 

Christian (1999), in that the effects of wrack disturbance varied depending on the position in the 

salt marsh. Their study site was near my location 4, and we both agree that when the amount of 

wrack decreases in this zone, Juncus is able to recover slowly. Therefore, although there is wrack 

deposition and wrack push back, there is still horizontal Juncus growth at this location. Also, 

since this is near a creek the wrack disturbances should be more frequent (Brinson and Christian, 

1999). The overall rates of horizontal movement at this location are faster than all of the other 

locations (Table 46). As a result, Juncus has moved the farthest out and reached beyond the outer 

limits of the 1 x 2 m plots (Figures 8 and 21). 

The bordering community (Figure 27), which consists of mostly S. alterniflora. D. 

spicata and Salicornia spp., were present in 1990 within the 1 x 2 m plot, but have disappeared 

at location 4 site A over the 24 years to be completely overcome by Juncus (Brinson and 
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Christian, 1999). They are, however, still present as bordering communities outside of the 1 x 2 

m plot at location 4 site A. Location 4 site B consists largely of S. alterniflora as the bordering 

community along with bare areas. Brinson and Christian (1999) stated that patch stability is 

owed in part to J. roemerianus extensive tolerance for a wide range of hydroperiod. This is 

shown in my study, specifically at location 4 site B (Figure 18). At this site, S. alterniflora was 

more dominant in the early years, but has been outcompeted by Juncus since around 1997. 

However, if wrack occurs Juncus will decrease, allowing S. alterniflora to increase and possibly 

outcompete Juncus (as it did in location 1 site B).  

At the high mash location, near the creek (location 4) there is intermediate tidal influence. 

At marshes at the VCR and the Cedar Island marsh, water source and hydrology are important to 

understand (Christian et al. 2000). Evapotranspiration has a major effect on water levels causing 

them to be below the surface of the marsh during growing seasons (Christian et al. 2000). This 

location had the lowest mean water level relative to the surface (Figure 35) and the 2nd highest 

mean salinity level (Figure 37), which are closely related to that of location 1. Taylor (1995) 

stated that salinity values can be altered depending on tidal flooding and evapotranspiration, as 

well as rainfall and freshwater runoff from upland neighboring communities. Tolley (1996) 

stated that salinity levels may decrease during a storm event permitting species less tolerant to 

salinity to occupy the area.  Taylor (1995) and Tolley (1996) had study sites that were near my 

location 4. Their locations also had low water levels and salinity levels very closely related to 

mine. During the growing season, at the Cedar Island marsh and marshes at the VCR, 

evapotranspiration has a major effect on the water levels causing them to be below the surface of 

the marsh (Christian et al. 2000). This study supports my results at location 4, in which the mean 

water level is below that of the marsh surface (lowest of all the locations). Also, this location 
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may support the fact that the soil beneath the layer of wrack holds more moisture because of 

reduced evapotranspiration (Taylor, 1995). In addition, this location had the next to lowest mean 

of MOM (Figure 41) and the 2nd highest mean of soil bulk density (Figure 39), which is also very 

similar to that of location 1. 

This high marsh location near a creek had significantly more wrack than all of the other 

locations (Figures 13 and 18) with the next to highest relative elevation at 1.28 m (Table 1). This 

location 4 is a high marsh near a creek that has been eroding into the high marsh (Brinson and 

Christian, 1999; Brinson et al. 1995). The outer limit (i.e., 20 grid units) for both sites at location 

4 was reached by the year 2011 (Figures 8 and 21). The years 2011, 2012, and 2013 all 

contributed to major wrack deposition at both location 4 site A, and especially at location 4 site 

B, because of the nor’easters and hurricanes that occurred during this period (Table 7). A very 

minimal amount of wrack was deposited at location 4 site A. However, at location 4 site B there 

was a large amount of wrack deposition, which caused a major period of inward movement by 

Juncus in 2011 that continued into 2013 (Figures 8 and 21). In 2013, Juncus finally started 

recovering from the wrack and moved outwards again for the last year of study. This high marsh 

near creek location is unique in that it had many years of repeated recovery for Juncus, which 

supports that of Tolley and Christian (1999). Tolley (1996) stated that plant species may take 

numerous years to re-establish and become species specific. Despite the major inward spike, 

overall, location 4 had the fastest rate of horizontal movement (Table 46).  

Low marsh – Location 1 

There is a large site difference between the low marsh location sites A and B (Figures 8, 

17, and 21). This location has shown the greatest impact from wrack disturbance, with wrack 

deposition being very prevalent, especially at location 1 site B (Figure 17). Location 1 site B is 
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greatly impacted by the excessive amount of wrack cover from major storms. There was wrack 

push back, in addition to high salinity levels and regular tidal flooding, which caused no 

horizontal Juncus growth and no movement of Juncus outwards. Location 1 has an overall 

slower rate of horizontal movement than all of the other locations (Table 46), showing a trend of 

inward movement, supporting and extending that of Brinson and Christian (1999). This location 

showed a decline in Juncus cover, with very large differences in wrack cover and bare soil. 

Location 1 site B experienced a major dip in 1994 because of the nor’easter that occurred. The 

regression, however, was calculated on the periods of years after this major wrack event. This 

was to show that there is slow growth at this low marsh site even after disturbance. The rate at 

location 1 site B, however, was faster than that of location 1 site A. This may because of slight 

differences in inundation and responses to disturbance at these sites. Another factor may be that 

there is a mix of species at location 1 site B and not at location 1 site A. The growth at location 1 

site B is in a previous Juncus area where rhizomes may already exist, meaning it is not growth 

into a new area. My study extends and agrees with Brinson and Christian (1999) in that over the 

whole 24 year period, location 1 had the least amount of growing, senescing, and dead Juncus 

biomass (Figures 22, 24, and 26) partly because of wrack disturbance (Brinson and Christian, 

1999). 

I found that Juncus can be found over a wide range of hydrogeomorphic conditions; 

however, for all of these factors related to the conditions of Juncus, there was no clear and 

consistent difference among geomorphic positions (Table 47). It is clear, though, that location 1 

(the low marsh) is less in the majority of these categories, agreeing with the statement that high 

marsh Juncus is higher in biomass, and denser and taller than when found in low marshes 

(Williams & Murdoch, 1972; Eleuterius, 1975, Eleuterius and Caldwell, 1981; Higinbotham et 
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al., 2004). The total growing Juncus biomass for this location 1 (as well as location 4) were high 

in 1990 and 1992, but dropped drastically in 2013 and 2014. This is largely due to wrack 

deposition. 

In my study, the total live bordering communities showed no significant differences 

among locations, and the standing dead bordering communities were also similar across the four 

locations (Table 47). For the standing dead bordering communities an important interaction was 

seen between locations 2 and 4 compared to locations 1 and 3. The bordering communities 

(Figure 27) at location 1 site B consist of S. alterniflora, D. spicata, Salicornia spp., and L. 

nashi, while location 1 site A is largely S. alterniflora. The low marsh (location 1), with a 

relative elevation of 1.22 m (Table 1), is lower than the other locations (with the exception of 

subsidence occurring at location 3). The findings at location 1 sites A and B would agree with 

the study by Bertness and Ellison (1987) in that lower marsh elevations are subject to wrack 

disturbances. They also said that D. spicata and S. patens were more prone to wrack disturbances 

than was S. alterniflora. My study supports theirs because location 1 site B (consisted of D. 

spicata, Salicornia spp., S. alterniflora, and L. nashi) experienced much more wrack deposition 

than did site A (which was largely S. alterniflora) (Figure 17). 

Pennings et al. (2005) studied flooding, salinity, and competition by conducting field and 

laboratory experiments. Both flooding and salinity had an effect on the lower elevation limit of J. 

roemerianus, but competition did not. This study supports the fact that neighboring communities 

may not be that critical to horizontal movement. Results of this study propose that there is 

expected geographical variation among ecological interactions because of differences in the 

physical environment. For example, at lower elevations the stress from salinity most likely has a 

more essential role in determining plant spatial patterns.  
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In the low marsh (location 1), there is more regular, dominant tidal flooding. Water 

source and hydrology is important to recognize, as it greatly affects the zones within a salt marsh 

(Christian et al. 2000). The plants in low marshes are often submerged by most, if not all, high 

tides (Weis and Butler, 2009) causing more frequent flooding (Wiegert and Freeman, 1990). 

Some decreases in patch size were related to wrack disturbance at the site that had the most 

recurrent and deepest tidal flooding (Brinson and Christian, 1999), as in my location 1 study site. 

Also, location 1 had the next to lowest mean water level relative to the surface (Figure 35) and 

the highest mean salinity level (Figure 37) (which supports data from Stasavich 1998; Roberts 

2000; Christian et al. 2000; Buck 2001). My data show water depth and salinity had a significant 

month and location interaction (Table 47). Also, S. alterniflora is adapted to higher levels of 

salinity and flooding than is Juncus. There is a substantial amount of overlap in salinity levels 

when studying Spartina areas compared to Juncus areas. Spartina is usually found in more saline 

zones and at lower elevations, and Juncus is usually found in less saline zones and at higher 

elevations (Woerner and Hackney, 1997). 

This low marsh location had the highest mean soil bulk density (Figure 39) and lowest 

mean of MOM (Figure 41) (Brinson and Christian, 1999) because the soils at this location are 

mineral soils. For soil bulk density there was a significant location and site interaction (Table 

47). The low elevation, position relative to a tidal creek, high bulk density and low mass of 

MOM are all characteristics of low marsh and separating features of low marsh from high marsh 

in marshes of the VCR (Brinson et al. 1995; Christian et al. 2000). All of these factors contribute 

to my location 1, being the least supportive of Juncus growth, and having the slowest overall 

rates of horizontal movement (Table 46).  
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The rates of horizontal movement at this location are slower overall than all of the other 

locations (Table 46), with some periods of inward movement. For the last continuous Juncus and 

the 3-m wide Juncus border studies, location 1 sites A and B look similar over the whole 24 year 

period (Figures 8 and 21). However, location 1 site A continued to decrease throughout all of the 

years of study, while location 1 site B experienced a major period of inward movement (Figures 

8 and 21) because of the storm in 1994 (Table 7) that deposited a large amount of wrack 

(Brinson and Christian, 1999). Outward movement did not occur again for location 1 site B until 

around 2004. This site continued to increase until the notable periods of storms occurred starting 

in 2011 (as explained in location 4). Although no wrack deposition was recorded, the hurricanes 

and nor’easters brought strong winds and precipitation that affected this location 1 site B, 

causing it to continue to decrease until the last year of study (in 2014). Also, an increase in the 

number of bare areas resulted in the years following 1994 because of the wrack deposition at this 

location (Brinson and Christian, 1999). Brinson and Christian (1999) stated that patch stability is 

owed in part to J. roemerianus’s extensive tolerance for a wide range of hydroperiod. This is 

shown in my study, specifically at location 1 site B. When the nor’easter occurred in 1994, 

causing major wrack deposition, the Juncus biomass decreased allowing S. alterniflora to 

increase and become the dominate species (Figure 17). When the amount of wrack finally 

decreased, Juncus was able to recover, however, at a slow rate (Tolley and Christian, 1999). 

 



 

 

CONCLUSION 

Implications 

Climate change has major consequences on the ecogeomorphology of coastal wetlands 

(Day et al. 2008). Reyes (2009) reviewed landscape wetland models, emphasizing integration of 

environmental dynamics and responses into the landscape. He highlighted landscape models that 

triggered long-term modifications because of climate change, sea-level rise, and variations in 

patterns of land use and land cover. Climate change will modify sea-level rise, which according 

to Trail et al. (2011) will greatly affect wetland communities along the coast. As sea-level rises, 

the carbon within a salt marsh will be dispersed, fluctuating among different regions of 

vegetation, and will be contingent upon the dynamics of production and decomposition as well 

as historic organic and inorganic deposition (Elsey-Quirk et al. 2011). Elsey-Quirk et al. (2011) 

also state that “relative sea level rise may alter the distribution and quantity of carbon within 

coastal wetlands, altering the relative proportion of plant zones, causing species shifts and 

landward migration, and contributing to the direct loss of wetland area.” Salt marshes will 

continue to accrete vertically with sea-level rise, diminishing the marsh surface via shoreline 

erosion (Christian et al. 2000). It is well known that sea-level rise is an enduring factor that is in 

control of ecosystem state changes (Brinson et al. 1995). The future of salt marshes are 

contingent upon horizontal movement, as well as the aptitude to grow vertically because of sea-

level rise (Christian et al. 2000).  

Understanding environmental variables is essential in zones where persistent inundation, 

high salinity, and inadequate amounts of nutrients may be altering plant productivity (Shafer and 

Hackney, 1987). Water source and hydrology are important to understand, as they affect the 

zones within a salt marsh (Christian et al. 2000). As a result of relative sea-level rise, a shift in 
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species may occur, causing species in the high marsh to be replaced by species in the low marsh 

as the salt marsh moves inland (Elsey-Quirk et al. 2011). A high marsh that may be dominated 

by Juncus, D. spicata, and S. patens will eventually go through an ecosystem state change 

transition to a low marsh. In the meantime, the associated low marsh will be eroding. “Thus the 

marsh is identified by its vegetation and factors affecting that vegetation, by its hydrogeomorphic 

position, and with respect to its probable future with respect to sea-level change (Christian et al. 

2000).” Also, Juncus is a southern species, and because of the climate change and temperature 

increases, it may be expanding its range northward. Juncus may or may not persist with the 

affects from storms, flooding, and sea-level rise. 

Conceptual Model 

This study is important in that it provides a long term data set for the Virginia Coast 

Reserve (VCR) and The Nature Conservancy (TNC) that tracks community structure and 

environmental factors within the salt marsh. This study also helps in understanding of ecosystem 

state changes of salt marshes associated with disturbance and sea-level rise. As seen in my study 

and conceptual model (Figure 42), flooding and inundation indirectly from sea-level rise vary 

depending on the location within UPC salt marsh associated with elevation differences and 

distances from a creek. Although, climate change and sea-level rise are not in conceptual model 

explicitly, the various environmental drivers in which I studied are all related to climate change. 

Also, sea level has risen over 24 years with potential for decreases in the marsh surface elevation 

(Robert Christian, personal communication, re: surface elevation table results).  

Juncus and the neighboring species get affected by the environmental factors listed in my 

conceptual model (Figure 1). This in turn causes patch border dynamics among communities 

(Brinson and Christian, 1999; Cahoon et al. 2009; Reyes 2009; Christian et al. 2000; Blum and 



 

107 

 

Christian 2004), contributing to differences among locations in horizontal movement of the 

border. The borders of patches between Juncus and other saltmarsh species within different areas 

of a salt marsh were tracked at Upper Philips Creek (UPC) in Virginia from 1990 to 2014. 

Juncus patches seemed relatively stable, over a variety of geomorphically different locations, in 

the fact that none have disappeared in 24 years. However, patch size is growing, shrinking or 

maintaining itself depending on hydrogeomorphic location within the salt marsh and the 

associated environmental factors in my conceptual model (Figure 42). 

 
Figure 42: New conceptual model highlighting most important factors. 

 

Hydroperiod, wrack deposition, frequency of tidal flooding, and elevation differences 

seem to be the most important aspects of my conceptual model relating to horizontal movement 

of border (Figure 42). All of the other various environmental factors did not show clear trends in 

horizontal movement of Juncus. In the low marsh, the patches may be hit by wrack and shrink. 

Wrack reduced patch size at low marsh site 1B in 1994 without full recovery. Expansion of 
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Juncus has occurred at high marsh sites both away from and near a creek. In high marsh areas 

patches are growing horizontally unless they are hit by wrack or bordering a hollow. If a hollow 

and hummock formation occurred, the movement in the high marsh was restricted, but the patch 

borders did not seem to erode significantly. However, in the case of high marsh near creek 

location there has been both Juncus expansion and wrack deposition. The horizontal growth of 

Juncus is enhanced at the transition from high marsh to low marsh and can continue while other 

high marsh plants cannot. Patch border retreated where wrack disturbance and flooding 

interrelate. Therefore, Juncus patch hydrogeomorphic setting and environmental factors within 

my conceptual model associated with location matter.  
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APPENDIX A. LAST CONTINUOUS JUNCUS DATA 

Location Plot Row 1990 1991 1992 1993 1994 1995 1996 

1 A A 11 10 10 9 10 10 9 

1 A B 13 10 10 10 10 10 9 

1 A C 12 10 10 10 10 10 9 

1 A D 10 10 10 9 10 10 9 

1 A E 11 9 10 9 10 10 10 

1 A F 13 9 10 9 10 10 9 

1 A G 13 12 10 9 10 10 10 

1 A H 14 12 12 10 10 10 10 

1 A I 14 12 12 9 10 10 8 

1 A J 14 12 12 10 10 10 8 

1 B A 12 12 12 13 12 12 11 

1 B B 12 12 12 12 12 12 11 

1 B C 12 12 13 13 12 3 0 

1 B D 12 13 13 13 13 2 0 

1 B E 12 12 11 12 10 2 0 

1 B F 10 10 10 10 9 0 0 

1 B G 9 9 10 10 10 0 0 

1 B H 9 9 10 7 10 0 0 

1 B I 9 11 10 8 10 0 0 

1 B J 11 10 10 10 10 0 0 

2 A A 10 10 10 11 11 12 12 

2 A B 10 10 10 11 11 13 11 

2 A C 10 10 10 10 11 13 13 

2 A D 12 12 13 13 12 13 13 

2 A E 12 13 13 13 12 13 13 

2 A F 10 12 11 13 11 11 13 

2 A G 10 10 10 10 11 10 13 

2 A H 10 10 11 10 11 13 13 

2 A I 10 12 12 11 12 12 13 

2 A J 10 12 12 12 14 14 14 

2 B A 10 10 11 11 12 13 14 

2 B B 11 10 11 11 12 12 13 

2 B C 10 11 12 11 12 13 13 

2 B D 10 10 10 10 12 13 13 

2 B E 10 9 10 10 12 13 13 

2 B F 10 9 10 9 11 11 13 

2 B G 10 10 10 11 12 11 12 

2 B H 10 10 11 11 13 13 13 
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2 B I 10 10 10 10 13 14 16 

2 B J 10 9 10 10 12 15 15 

3 A A 9 9 10 9 10 10 10 

3 A B 9 9 10 9 10 10 10 

3 A C 8 9 10 10 10 10 10 

3 A D 8 9 10 10 10 10 11 

3 A E 8 10 10 10 10 10 12 

3 A F 8 9 10 9 10 10 12 

3 A G 8 9 10 10 10 10 12 

3 A H 8 9 10 10 10 10 12 

3 A I 8 9 10 9 10 10 12 

3 A J 8 9 10 9 10 10 12 

3 B A 5 6 10 6 10 7 8 

3 B B 7 6 10 7 10 8 9 

3 B C 7 8 10 8 10 9 10 

3 B D 7 9 10 9 10 10 11 

3 B E 9 10 10 10 10 10 12 

3 B F 11 10 10 10 11 11 12 

3 B G 12 10 10 10 11 11 12 

3 B H 12 10 10 10 11 11 12 

3 B I 12 10 10 10 10 11 11 

3 B J 11 9 10 10 10 10 11 

4 A A 9 10 16 11 15 16 16 

4 A B 13 13 17 15 15 17 16 

4 A C 13 15 17 17 19 16 20 

4 A D 14 14 17 17 18 20 20 

4 A E 16 16 20 19 20 20 20 

4 A F 15 16 15 20 20 20 20 

4 A G 14 11 18 19 19 20 20 

4 A H 17 17 17 20 19 20 20 

4 A I 14 18 13 17 19 20 20 

4 A J 10 10 19 16 18 20 20 

4 B A 9 9 10 10 11 13 13 

4 B B 8 9 10 10 11 12 10 

4 B C 9 10 10 10 11 12 10 

4 B D 9 11 10 10 12 12 12 

4 B E 10 11 5 10 13 13 12 

4 B F 9 11 10 10 13 13 11 

4 B G 8 10 10 10 10 11 11 

4 B H 9 11 10 9 11 11 11 

4 B I 9 10 10 10 10 10 10 
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4 B J 9 9 10 10 10 9 10 

 

 

Location Plot Row 1997 1998 1999 2000 2001 2002 2003 

1 A A 9 9 9 9 10 9 9 

1 A B 9 9 9 9 10 10 9 

1 A C 10 9 9 8 10 9 9 

1 A D 9 9 9 9 10 9 10 

1 A E 10 9 9 10 10 10 10 

1 A F 10 9 9 9 10 9 9 

1 A G 10 9 9 9 9 10 9 

1 A H 9 9 9 8 8 9 8 

1 A I 9 8 8 8 9 8 8 

1 A J 9 8 8 8 10 9 9 

1 B A 0 12 0 13 14 14 14 

1 B B 4 13 12 12 14 13 12 

1 B C 12 11 4 11 12 0 13 

1 B D 0 0 0 0 5 0 1 

1 B E 0 0 0 0 0 0 0 

1 B F 0 0 0 0 0 0 0 

1 B G 0 0 0 0 0 0 0 

1 B H 0 0 0 0 0 0 0 

1 B I 0 0 0 0 0 0 0 

1 B J 0 0 0 0 0 0 0 

2 A A 11 11 13 13 14 14 18 

2 A B 11 12 13 13 14 15 18 

2 A C 11 12 13 12 14 16 18 

2 A D 13 14 14 15 16 16 18 

2 A E 13 15 15 16 16 16 18 

2 A F 14 15 16 15 16 17 16 

2 A G 12 15 14 14 15 15 16 

2 A H 12 12 13 13 16 15 16 

2 A I 12 12 14 14 16 15 14 

2 A J 13 14 14 14 16 15 16 

2 B A 14 16 16 17 17 17 18 

2 B B 16 17 16 17 17 17 18 

2 B C 12 14 15 16 16 17 18 

2 B D 12 14 14 14 16 19 20 

2 B E 12 14 13 14 16 18 20 

2 B F 11 12 13 15 17 17 19 
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2 B G 12 14 14 14 20 19 17 

2 B H 14 18 18 19 20 20 20 

2 B I 16 18 19 20 20 19 20 

2 B J 16 18 19 19 20 20 20 

3 A A 11 11 12 12 12 11 12 

3 A B 10 11 11 11 12 11 12 

3 A C 11 11 12 11 12 11 12 

3 A D 11 11 12 12 12 12 13 

3 A E 11 12 12 12 12 12 13 

3 A F 10 11 12 12 12 12 13 

3 A G 10 11 12 11 12 12 13 

3 A H 10 11 12 11 12 12 13 

3 A I 10 12 13 12 12 12 13 

3 A J 10 11 12 11 12 12 13 

3 B A 7 7 7 7 7 7 8 

3 B B 7 7 8 9 8 8 9 

3 B C 9 9 9 10 10 9 11 

3 B D 10 10 10 10 12 10 13 

3 B E 10 11 10 11 13 12 13 

3 B F 11 11 12 12 13 12 13 

3 B G 11 11 12 12 13 12 13 

3 B H 11 11 11 12 13 12 13 

3 B I 11 10 11 9 13 12 14 

3 B J 9 10 9 9 11 12 11 

4 A A 17 19 19 18 20 20 20 

4 A B 16 18 19 20 20 20 20 

4 A C 16 18 17 20 20 20 20 

4 A D 18 20 20 20 20 20 20 

4 A E 20 20 20 20 20 20 20 

4 A F 20 20 20 20 20 20 20 

4 A G 20 20 20 20 20 20 20 

4 A H 20 20 20 20 20 20 20 

4 A I 19 20 20 20 20 20 20 

4 A J 20 20 20 20 20 20 20 

4 B A 16 15 17 20 20 20 20 

4 B B 17 15 17 20 20 20 20 

4 B C 15 16 18 20 20 20 20 

4 B D 14 16 17 17 20 20 20 

4 B E 13 12 14 14 19 20 20 

4 B F 12 12 14 14 18 18 20 

4 B G 12 13 13 14 17 18 19 
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4 B H 13 13 14 14 14 17 18 

4 B I 11 12 14 15 15 17 18 

4 B J 9 12 14 15 15 16 18 

 

Location Plot Row 2004 2005 2006 2007 2008 2009 2010 

1 A A 9 9 9 9 8 9 9 

1 A B 9 10 9 9 8 9 9 

1 A C 9 9 8 8 8 8 9 

1 A D 9 9 9 10 8 8 9 

1 A E 9 10 9 9 8 9 10 

1 A F 10 10 9 9 8 10 9 

1 A G 9 9 7 8 8 8 9 

1 A H 9 9 7 7 8 8 8 

1 A I 9 9 7 8 8 7 7 

1 A J 9 9 7 7 8 7 7 

1 B A 14 15 14 15 16 15 15 

1 B B 14 15 15 16 16 16 15 

1 B C 14 13 14 15 15 16 15 

1 B D 0 13 14 14 15 15 15 

1 B E 0 0 5 11 0 14 14 

1 B F 0 0 0 0 0 1 0 

1 B G 0 0 0 1 2 1 2 

1 B H 0 0 2 2 2 2 2 

1 B I 0 0 0 2 0 0 1 

1 B J 0 0 0 0 0 0 1 

2 A A 16 15 16 16 14 15 16 

2 A B 18 16 17 16 16 16 18 

2 A C 18 18 18 17 18 18 19 

2 A D 18 18 18 19 18 19 20 

2 A E 18 18 18 19 18 19 20 

2 A F 17 17 18 18 18 19 20 

2 A G 18 17 17 19 18 19 20 

2 A H 14 17 18 17 18 19 20 

2 A I 16 17 18 18 18 18 20 

2 A J 18 15 18 19 19 19 20 

2 B A 17 20 20 20 20 20 20 

2 B B 19 20 20 20 20 20 20 

2 B C 19 20 20 20 20 20 20 

2 B D 20 20 20 20 20 20 20 

2 B E 20 20 20 20 20 20 20 
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2 B F 19 20 20 20 20 20 20 

2 B G 20 20 20 20 20 20 20 

2 B H 20 20 20 20 20 20 20 

2 B I 20 20 20 20 20 20 20 

2 B J 19 20 20 20 20 20 20 

3 A A 12 12 13 13 14 15 13 

3 A B 12 12 13 13 14 16 13 

3 A C 12 12 13 13 14 16 13 

3 A D 12 12 13 14 14 16 13 

3 A E 13 12 13 13 13 16 13 

3 A F 13 12 13 12 13 16 13 

3 A G 13 12 13 12 13 16 13 

3 A H 13 12 13 11 13 16 13 

3 A I 13 13 13 11 13 16 13 

3 A J 13 12 13 11 12 16 13 

3 B A 8 8 7 7 8 9 8 

3 B B 11 9 8 9 11 9 9 

3 B C 12 12 12 10 13 11 11 

3 B D 13 13 13 10 14 14 14 

3 B E 14 13 14 10 15 15 14 

3 B F 14 13 15 10 15 15 14 

3 B G 14 13 15 11 15 15 14 

3 B H 15 12 15 10 15 15 15 

3 B I 15 13 14 10 15 15 15 

3 B J 13 13 13 10 15 14 12 

4 A A 20 20 20 20 20 20 20 

4 A B 20 20 20 20 20 20 20 

4 A C 20 20 20 20 20 20 20 

4 A D 20 20 20 20 20 20 20 

4 A E 20 20 20 20 20 20 20 

4 A F 20 20 20 20 20 20 20 

4 A G 20 20 20 20 20 20 20 

4 A H 20 20 20 20 20 20 20 

4 A I 20 20 20 20 20 20 20 

4 A J 20 20 20 20 20 20 20 

4 B A 20 20 20 20 20 20 20 

4 B B 20 20 20 20 20 20 20 

4 B C 20 20 20 20 20 20 20 

4 B D 20 20 20 20 20 20 20 

4 B E 20 20 20 20 20 20 20 

4 B F 20 20 20 20 20 20 20 
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4 B G 20 20 20 20 20 20 20 

4 B H 20 20 20 20 20 20 20 

4 B I 20 20 20 20 20 20 20 

4 B J 20 20 20 20 20 20 20 

 

Location Plot Row 2011 2012 2013 2014 

1 A A 9 9 8 8 

1 A B 8 10 8 8 

1 A C 8 9 9 8 

1 A D 7 9 9 9 

1 A E 9 9 9 8 

1 A F 9 9 9 9 

1 A G 8 9 8 9 

1 A H 6 8 8 8 

1 A I 9 8 7 7 

1 A J 9 7 7 8 

1 B A 15 14 15 15 

1 B B 16 15 15 14 

1 B C 15 15 15 16 

1 B D 15 15 15 14 

1 B E 15 11 11 1 

1 B F 0 0 1 1 

1 B G 14 2 2 3 

1 B H 2 2 2 2 

1 B I 2 1 2 1 

1 B J 1 4 2 6 

2 A A  16 17 18 

2 A B  17 18 18 

2 A C  18 17 19 

2 A D  19 20 19 

2 A E  20 20 19 

2 A F  20 20 20 

2 A G  20 20 20 

2 A H  20 20 19 

2 A I  20 20 19 

2 A J  20 20 19 

2 B A  20 20 20 

2 B B  20 20 20 

2 B C  20 20 20 

2 B D  20 20 20 
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2 B E  20 20 20 

2 B F  20 20 20 

2 B G  20 20 20 

2 B H  20 20 20 

2 B I  20 20 20 

2 B J  20 20 20 

3 A A  14 16 16 

3 A B  14 14 16 

3 A C  14 14 16 

3 A D  14 14 16 

3 A E  15 15 16 

3 A F  15 15 16 

3 A G  15 15 16 

3 A H  15 15 16 

3 A I  15 15 16 

3 A J  15 15 16 

3 B A  7 8 6 

3 B B  9 9 9 

3 B C  10 10 12 

3 B D  13 13 15 

3 B E  14 14 15 

3 B F  14 14 16 

3 B G  15 14 16 

3 B H  15 15 16 

3 B I  14 14 16 

3 B J  14 14 15 

4 A A 20 20 20 20 

4 A B 20 19 19 20 

4 A C 20 20 19 19 

4 A D 20 20 20 19 

4 A E 20 20 20 20 

4 A F 20 20 20 20 

4 A G 20 20 20 20 

4 A H 20 20 20 20 

4 A I 20 20 20 20 

4 A J 20 20 20 20 

4 B A 20 10 20 20 

4 B B 20 18 20 20 

4 B C 20 19 19 20 

4 B D 20 19 17 19 

4 B E 20 19 19 20 
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4 B F 20 18 17 17 

4 B G 20 17 16 18 

4 B H 20 5 15 17 

4 B I 20 17 5 19 

4 B J 20 16 5 18 

 

  



 

124 

 

APPENDIX B. JUNCUS AND WRACK GROUND COVER DATA 

Year Location Site Juncus (dm2) Wrack/Litt (dm2) 

1990 1 A 121 0 

1990 1 B 107 0 

1990 2 A 103 0 

1990 2 B 101 0 

1990 3 A 82 0 

1990 3 B 92 0 

1990 4 A 117 35 

1990 4 B 89 106 

1991 1 A 105 0 

1991 1 B 109 0 

1991 2 A 110 0 

1991 2 B 97 0 

1991 3 A 91 0 

1991 3 B 88 0 

1991 4 A 133 8 

1991 4 B 100 3 

1992 1 A 102 44 

1992 1 B 106 0 

1992 2 A 110 0 

1992 2 B 105 0 

1992 3 A 90 0 

1992 3 B 94 0 

1992 4 A 150 0 

1992 4 B 87 78 

1993 1 A 94 0 

1993 1 B 109 0 

1993 2 A 113 63 

1993 2 B 104 73 

1993 3 A 90 39 

1993 3 B 90 106 

1993 4 A 161 16 

1993 4 B 129 0 

1994 1 A 88 86 

1994 1 B 78 200 

1994 2 A 116 30 

1994 2 B 120 46 

1994 3 A 98 0 

1994 3 B 91 31 

1994 4 A 169 26 
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1994 4 B 111 67 

1995 1 A 99 0 

1995 1 B 13 104 

1995 2 A 123 32 

1995 2 B 128 40 

1995 3 A 100 0 

1995 3 B 98 0 

1995 4 A 179 19 

1995 4 B 116 92 

1996 1 A 91 0 

1996 1 B 3 77 

1996 2 A 127 0 

1996 2 B 135 0 

1996 3 A 113 0 

1996 3 B 109 0 

1996 4 A 185 0 

1996 4 B 109 2 

1997 1 A 94 0 

1997 1 B 2 0 

1997 2 A 122 68 

1997 2 B 132 68 

1997 3 A 104 0 

1997 3 B 95 58 

1997 4 A 181 14 

1997 4 B 127 2 

1998 1 A 87 0 

1998 1 B 4 0 

1998 2 A 130 39 

1998 2 B 154 40 

1998 3 A 112 0 

1998 3 B 97 34 

1998 4 A 191 0 

1998 4 B 134 48 

1999 1 A 88 0 

1999 1 B 2 7 

1999 2 A 133 46 

1999 2 B 155 42 

1999 3 A 120 0 

1999 3 B 98 10 

1999 4 A 194 9 

1999 4 B 140 56 
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2000 1 A 87 0 

2000 1 B 4 0 

2000 2 A 139 0 

2000 2 B 165 0 

2000 3 A 115 0 

2000 3 B 101 0 

2000 4 A 196 0 

2000 4 B 148 33 

2001 1 A 96 0 

2001 1 B 15 0 

2001 2 A 152 0 

2001 2 B 179 0 

2001 3 A 120 0 

2001 3 B 113 0 

2001 4 A 200 0 

2001 4 B 174 0 

2002 1 A 92 0 

2002 1 B 7 0 

2002 2 A 154 6 

2002 2 B 182 3 

2002 3 A 117 0 

2002 3 B 106 0 

2002 4 A 200 0 

2002 4 B 186 0 

2003 1 A 90 0 

2003 1 B 12 0 

2003 2 A 163 0 

2003 2 B 189 0 

2003 3 A 127 0 

2003 3 B 119 0 

2003 4 A 200 0 

2003 4 B 193 0 

2004 1 A 91 0 

2004 1 B 15 0 

2004 2 A 171 0 

2004 2 B 193 0 

2004 3 A 126 0 

2004 3 B 129 0 

2004 4 A 200 0 

2004 4 B 198 0 

2005 1 A 93 0 
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2005 1 B 27 0 

2005 2 A 166 0 

2005 2 B 200 0 

2005 3 A 121 0 

2005 3 B 118 0 

2005 4 A 200 0 

2005 4 B 200 0 

2006 1 A 81 13 

2006 1 B 40 0 

2006 2 A 176 0 

2006 2 B 200 0 

2006 3 A 130 0 

2006 3 B 125 0 

2006 4 A 178 89 

2006 4 B 200 56 

2007 1 A 84 0 

2007 1 B 47 0 

2007 2 A 178 0 

2007 2 B 200 0 

2007 3 A 123 0 

2007 3 B 97 0 

2007 4 A 180 76 

2007 4 B 200 47 

2008 1 A 80 0 

2008 1 B 40 0 

2008 2 A 175 0 

2008 2 B 199 0 

2008 3 A 133 0 

2008 3 B 136 0 

2008 4 A 200 6 

2008 4 B 200 0 

2009 1 A 82 0 

2009 1 B 34 0 

2009 2 A 181 0 

2009 2 B 200 0 

2009 3 A 159 0 

2009 3 B 132 0 

2009 4 A 199 0 

2009 4 B 196 0 

2010 1 A 84 0 

2010 1 B 35 0 
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2010 2 A 193 0 

2010 2 B 200 0 

2010 3 A 130 0 

2010 3 B 125 0 

2010 4 A 190 0 

2010 4 B 190 0 

2011 1 A 71 0 

2011 1 B 33 0 

2011 2 A NA NA 

2011 2 B NA NA 

2011 3 A NA NA 

2011 3 B NA NA 

2011 4 A 198 0 

2011 4 B 199 129 

2012 1 A 81 0 

2012 1 B 28 0 

2012 2 A 188 0 

2012 2 B 200 0 

2012 3 A 146 0 

2012 3 B 125 0 

2012 4 A 198 16 

2012 4 B 90 156 

2013 1 A 76 0 

2013 1 B 28 0 

2013 2 A 191 0 

2013 2 B 200 0 

2013 3 A 147 0 

2013 3 B 122 0 

2013 4 A 198 16 

2013 4 B 110 139 

2014 1 A 76 0 

2014 1 B 29 0 

2014 2 A 190 0 

2014 2 B 200 0 

2014 3 A 160 0 

2014 3 B 134 0 

2014 4 A 198 18 

2014 4 B 146 86 
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APPENDIX C. JUNCUS 3-M WIDE BORDER POSITION DATA 

Location Site PVC marks (cm) Measurements (cm) 

1 A 0 -29 

1 A 30 0 

1 A 60 9 

1 A 90 25 

1 A 120 9 

1 A 150 10 

1 A 180 5 

1 A 210 -6 

1 A 240 -26 

1 A 270 -14 

1 A 300 16 

1 B 0 45 

1 B 30 43 

1 B 60 -90 

1 B 90 -135 

1 B 120 -138 

1 B 150 71 

1 B 180 82 

1 B 210 96 

1 B 240 59 

1 B 270 50 

1 B 300 137 

2 A 0 66 

2 A 30 95 

2 A 60 103 

2 A 90 110 

2 A 120 109 

2 A 150 96 

2 A 180 64 

2 A 210 112 

2 A 240 112 

2 A 270 121 

2 A 300 99 

2 B 0 153 

2 B 30 160 

2 B 60 190 

2 B 90 180 

2 B 120 135 

2 B 150 185 
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2 B 180 200 

2 B 210 210 

2 B 240 220 

2 B 270 205 

2 B 300 250 

3 A 0 28 

3 A 30 35 

3 A 60 30 

3 A 90 14 

3 A 120 26 

3 A 150 9 

3 A 180 -35 

3 A 210 19 

3 A 240 19 

3 A 270 17 

3 A 300 18 

3 B 0 -29 

3 B 30 0 

3 B 60 9 

3 B 90 25 

3 B 120 9 

3 B 150 10 

3 B 180 5 

3 B 210 -6 

3 B 240 -26 

3 B 270 -14 

3 B 300 16 

4 A 0 265 

4 A 30 275 

4 A 60 315 

4 A 90 305 

4 A 120 375 

4 A 150 310 

4 A 180 320 

4 A 210 315 

4 A 240 320 

4 A 270 295 

4 A 300 285 

4 B 0 165 

4 B 30 160 

4 B 60 170 
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4 B 90 190 

4 B 120 145 

4 B 150 150 

4 B 180 190 

4 B 210 205 

4 B 240 215 

4 B 270 175 

4 B 300 225 

 

 

 

APPENDIX D. TRANSECT POSITION DATA 

Transect Location Measurement (cm) Mean (cm) Standard Deviation (cm) 

1 Near 1 125 121.7 85.0 

2   205     

3   35     

4 Nearest 1 125 58.7 62.9 

5   0     

6   51     

7 Near 2 170 149.0 54.6 

8   87     

9   190     
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APPENDIX E. JUNCUS BIOMASS DATA 

Total Growing Juncus Biomass g/m2 

Location Site In/Out 1990 1992 2013 2014 

1 A In 186.96 335.04 84.96 133.6 

1 B In 306.68 293.84 0 20.48 

2 A In 82.6 266.32 269.76 324.48 

2 B In 481.48 220.64 358.56 431.2 

3 A In 457.6 275.44 196.16 307.84 

3 B In 251.44 382.8 541.92 318.24 

4 A In 340.12 269.6 116.16 110.24 

4 B In 400.4 458 104.32 119.52 

 

Total Senescing Juncus Biomass g/m2 

Location Site In/Out 1990 1992 2013 2014 

1 A In 573.12 272.16 178.4 161.44 

1 B In 454.56 405.28 0 30.72 

2 A In 602.44 483.68 742.24 312.64 

2 B In 688.6 605.04 765.76 469.92 

3 A In 827 582.4 1307.2 687.52 

3 B In 1240.84 736.8 1331.84 794.88 

4 A In 503.08 361.2 785.92 169.76 

4 B In 391.32 553.84 974.72 237.76 

 

Standing Dead Juncus Biomass g/m2 

Location Site In/Out 1990 1992 2013 2014 

1 A In 892.16 736 73.44 1157.28 

1 B In 884.36 747.76 0 0 

2 A In 419.08 1030.56 1129.76 742.88 

2 B In 951.72 1077.04 645.6 752.8 

3 A In 1772.44 1150.88 1053.12 1622.88 

3 B In 2155.96 2150.64 873.28 1137.12 

4 A In 908.04 768.4 694.56 1157.92 

4 B In 115.4 853.04 464.96 867.2 
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APPENDIX F. BORDERING COMMUNITIES BIOMASS DATA 

Total Live Bordering Communities g/m2 

Location Site In/Out 1990 1992 2013 2014 

1 A Out 165.68 4.16 129.6 215.2 

1 B Out 153.36 12.32 452.16 329.12 

2 A Out 634.36 13.36 0 0 

2 B Out 398.52 1.2 70.56 776.48 

3 A Out 84.2 10.24 0 0 

3 B Out 551.04 17.92 512.64 234.24 

4 A Out 320.56 4 483.84 547.52 

4 B Out 302.12 22.16 645.6 478.24 

 

Standing Dead Bordering Communities g/m2 

Location Site In/Out 1990 1992 2013 2014 

1 A Out 250.36 98.96 12.32 35.68 

1 B Out 187.72 272.72 312.16 111.2 

2 A Out 816.96 1371.04 0 0 

2 B Out 517.88 1001.76 512.32 366.56 

3 A Out 292.16 465.2 0 0 

3 B Out 594.44 888.72 78.24 140.64 

4 A Out 479.84 844.72 156.8 227.04 

4 B Out 464.28 812.96 614.88 209.12 
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APPENDIX G. DENSITY DATA ON GROWING AND SENESCING JUNCUS LEAVES 

Year Location Site In/Out Sample 
Number of Growing 
Juncus leaves per m2 

Number of Senescing 
Juncus leaves per m2 

1990 1 A In  106 185 

1990 1 B In  172 128 

1990 2 A In  39 100 

1990 2 B In  170 176 

1990 3 A In  107 153 

1990 3 B In  127 298 

1990 4 A In  99 97 

1990 4 B In  165 134 

1992 1 A In 3 29 20 

1992 1 A In 2 47 27 

1992 1 B In 5 36 30 

1992 1 B In 6 44 30 

1992 2 A In 4 13 13 

1992 2 A In 5 44 43 

1992 2 B In 4 38 56 

1992 2 B In 3 16 20 

1992 3 A In 1 13 13 

1992 3 A In 6 51 38 

1992 3 B In 6 77 56 

1992 3 B In 2 45 45 

1992 4 A In 2 24 20 

1992 4 A In 6 19 18 

1992 4 B In 2 31 32 

1992 4 B In 5 57 37 

2013 1 A In  7 7 

2013 1 B In  0 0 

2013 2 A In  10 29 

2013 2 B In  28 14 

2013 3 A In  26 11 

2013 3 B In  38 25 

2013 4 A In  38 10 

2013 4 B In  31 13 

2014 1 A In  13 16 

2014 1 B In  4 2 

2014 2 A In  29 15 

2014 2 B In  31 6 

2014 3 A In  24 13 

2014 3 B In  32 26 
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2014 4 A In  10 11 

2014 4 B In  15 13 
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APPENDIX H. HEIGHT DATA ON JUNCUS LEAVES 

Year Location Site In/Out Sample Total Height (cm) 

1990 1 A In  145.1 

1990 1 A In  163.9 

1990 1 A In  108 

1990 1 A In  144.8 

1990 1 A In  191.7 

1990 1 A In  175.5 

1990 1 A In  133.3 

1990 1 A In  148.1 

1990 1 A In  177.2 

1990 1 A In  160.8 

1990 1 A In  169 

1990 1 A In  166.5 

1990 1 A In  158 

1990 1 A In  148.9 

1990 1 A In  138.1 

1990 1 A In  108.8 

1990 1 A In  115.3 

1990 1 A In  141.4 

1990 1 A In  102.4 

1990 1 A In  143.5 

1990 1 B In  151.1 

1990 1 B In  164.2 

1990 1 B In  153.7 

1990 1 B In  136.2 

1990 1 B In  159.7 

1990 1 B In  196.1 

1990 1 B In  145.5 

1990 1 B In  122 

1990 1 B In  157.2 

1990 1 B In  105.7 

1990 1 B In  172.6 

1990 1 B In  128.4 

1990 1 B In  110.6 

1990 1 B In  132.3 

1990 1 B In  149.3 

1990 1 B In  179 

1990 1 B In  119.3 

1990 1 B In  166.3 

1990 1 B In  156.6 
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1990 1 B In  164.5 

1990 2 A In  85.6 

1990 2 A In  217.7 

1990 2 A In  142.5 

1990 2 A In  179.5 

1990 2 A In  211.3 

1990 2 A In  161.2 

1990 2 A In  185.9 

1990 2 A In  148.3 

1990 2 A In  120.8 

1990 2 A In  90.3 

1990 2 A In  140.3 

1990 2 A In  127.8 

1990 2 A In  103.7 

1990 2 A In  127.6 

1990 2 A In  143 

1990 2 A In  121.5 

1990 2 A In  102.5 

1990 2 A In  142.1 

1990 2 A In  101.6 

1990 2 A In  123.3 

1990 2 B In  195.2 

1990 2 B In  217 

1990 2 B In  218.5 

1990 2 B In  217.5 

1990 2 B In  184.1 

1990 2 B In  217.8 

1990 2 B In  185 

1990 2 B In  163.4 

1990 2 B In  198.8 

1990 2 B In  185.1 

1990 2 B In  185 

1990 2 B In  192.2 

1990 2 B In  226.5 

1990 2 B In  201.1 

1990 2 B In  198.2 

1990 2 B In  156.5 

1990 2 B In  217.7 

1990 2 B In  214 

1990 2 B In  137.7 

1990 2 B In  178.7 
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1990 3 A In  188.9 

1990 3 A In  144.7 

1990 3 A In  191.8 

1990 3 A In  169.8 

1990 3 A In  207 

1990 3 A In  177.8 

1990 3 A In  229.4 

1990 3 A In  181.7 

1990 3 A In  200.8 

1990 3 A In  205.6 

1990 3 A In  201.8 

1990 3 A In  178.9 

1990 3 A In  163.3 

1990 3 A In  174.9 

1990 3 A In  171.1 

1990 3 A In  205.8 

1990 3 A In  158.3 

1990 3 A In  157.8 

1990 3 A In  126.6 

1990 3 A In  229 

1990 3 B In  137.8 

1990 3 B In  186.3 

1990 3 B In  189.4 

1990 3 B In  121.2 

1990 3 B In  162.5 

1990 3 B In  181.2 

1990 3 B In  145.2 

1990 3 B In  112.2 

1990 3 B In  155.2 

1990 3 B In  112.4 

1990 3 B In  165.1 

1990 3 B In  142.8 

1990 3 B In  126 

1990 3 B In  104.4 

1990 3 B In  134.6 

1990 3 B In  146 

1990 3 B In  164.4 

1990 3 B In  193.4 

1990 3 B In  167.2 

1990 3 B In  201.8 

1990 4 A In  180.6 
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1990 4 A In  155 

1990 4 A In  166.9 

1990 4 A In  187.8 

1990 4 A In  159.7 

1990 4 A In  190 

1990 4 A In  174.5 

1990 4 A In  135.6 

1990 4 A In  155.4 

1990 4 A In  161.5 

1990 4 A In  161.5 

1990 4 A In  139.4 

1990 4 A In  159.8 

1990 4 A In  149.3 

1990 4 A In  159.7 

1990 4 A In  154.1 

1990 4 A In  123.6 

1990 4 A In  125.7 

1990 4 A In  112.1 

1990 4 A In  144.8 

1990 4 B In  198.6 

1990 4 B In  143 

1990 4 B In  140 

1990 4 B In  84.2 

1990 4 B In  100.4 

1990 4 B In  161.5 

1990 4 B In  149.3 

1990 4 B In  107.6 

1990 4 B In  126.5 

1990 4 B In  137.1 

1990 4 B In  159 

1990 4 B In  122.8 

1990 4 B In  122.2 

1990 4 B In  107.6 

1990 4 B In  153.9 

1990 4 B In  155.5 

1990 4 B In  190 

1990 4 B In  141.3 

1990 4 B In  109.2 

1990 4 B In  134 

      

1992 1 A In 3 89.5 
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1992 1 A In 3 114.7 

1992 1 A In 3 124.6 

1992 1 A In 3 182.6 

1992 1 A In 3 108.9 

1992 1 A In 3 118 

1992 1 A In 3 106.7 

1992 1 A In 3 146.8 

1992 1 A In 3 148.9 

1992 1 A In 3 127.7 

1992 1 A In 3 164.2 

1992 1 A In 3 184.7 

1992 1 A In 3 168.2 

1992 1 A In 3 99.7 

1992 1 A In 3 131.9 

1992 1 A In 3 145.4 

1992 1 A In 3 137.9 

1992 1 A In 3 100.8 

1992 1 A In 3 182.3 

1992 1 A In 3 131.1 

      

1992 1 A In 2 180.7 

1992 1 A In 2 142.5 

1992 1 A In 2 172.9 

1992 1 A In 2 180.7 

1992 1 A In 2 168 

1992 1 A In 2 128.6 

1992 1 A In 2 170.9 

1992 1 A In 2 196.5 

1992 1 A In 2 153.1 

1992 1 A In 2 157.6 

1992 1 A In 2 148.6 

1992 1 A In 2 126.1 

1992 1 A In 2 99.6 

1992 1 A In 2 149.4 

1992 1 A In 2 169.3 

1992 1 A In 2 157.7 

1992 1 A In 2 172.1 

1992 1 A In 2 166 

1992 1 A In 2 173.9 

1992 1 A In 2 114 
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1992 1 B In 5 83 

1992 1 B In 5 122.9 

1992 1 B In 5 115.2 

1992 1 B In 5 128.6 

1992 1 B In 5 125.1 

1992 1 B In 5 170.8 

1992 1 B In 5 179.7 

1992 1 B In 5 129.1 

1992 1 B In 5 98.6 

1992 1 B In 5 123.6 

1992 1 B In 5 167.6 

1992 1 B In 5 164.3 

1992 1 B In 5 118 

1992 1 B In 5 127 

1992 1 B In 5 150.2 

1992 1 B In 5 178 

1992 1 B In 5 159.8 

1992 1 B In 5 138.7 

1992 1 B In 5 158.2 

1992 1 B In 5 111.7 

      

1992 1 B In 6 104.4 

1992 1 B In 6 124 

1992 1 B In 6 141.5 

1992 1 B In 6 122.9 

1992 1 B In 6 144.1 

1992 1 B In 6 135.6 

1992 1 B In 6 189.3 

1992 1 B In 6 103.7 

1992 1 B In 6 101.3 

1992 1 B In 6 160.9 

1992 1 B In 6 164.1 

1992 1 B In 6 140.9 

1992 1 B In 6 135.2 

1992 1 B In 6 176.8 

1992 1 B In 6 142.4 

1992 1 B In 6 124.7 

1992 1 B In 6 136.6 

1992 1 B In 6 96.7 

1992 1 B In 6 142.8 

1992 1 B In 6 128.3 
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1992 2 A In 4 145.4 

1992 2 A In 4 173.7 

1992 2 A In 4 165.9 

1992 2 A In 4 177.8 

1992 2 A In 4 122 

1992 2 A In 4 132 

1992 2 A In 4 177 

1992 2 A In 4 152.1 

1992 2 A In 4 99.2 

1992 2 A In 4 104.4 

1992 2 A In 4 75.5 

1992 2 A In 4 66.4 

1992 2 A In 4 97.9 

      

1992 2 A In 5 118.4 

1992 2 A In 5 199.6 

1992 2 A In 5 119.9 

1992 2 A In 5 103.1 

1992 2 A In 5 195.5 

1992 2 A In 5 147 

1992 2 A In 5 103.3 

1992 2 A In 5 197.8 

1992 2 A In 5 163.8 

1992 2 A In 5 209.4 

1992 2 A In 5 114.1 

1992 2 A In 5 188.4 

1992 2 A In 5 165.1 

1992 2 A In 5 200.9 

1992 2 A In 5 139.3 

1992 2 A In 5 144.4 

1992 2 A In 5 204 

1992 2 A In 5 186 

1992 2 A In 5 152.4 

1992 2 A In 5 67.5 

      

1992 2 B In 4 101 

1992 2 B In 4 202.1 

1992 2 B In 4 185 

1992 2 B In 4 174 

1992 2 B In 4 122.8 
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1992 2 B In 4 242.3 

1992 2 B In 4 221.8 

1992 2 B In 4 119.3 

1992 2 B In 4 232.7 

1992 2 B In 4 272.1 

1992 2 B In 4 207.2 

1992 2 B In 4 201 

1992 2 B In 4 211.6 

1992 2 B In 4 179 

1992 2 B In 4 187.8 

1992 2 B In 4 232.3 

1992 2 B In 4 226.2 

1992 2 B In 4 86.3 

1992 2 B In 4 141.2 

1992 2 B In 4 185 

      

1992 2 B In 3 105.6 

1992 2 B In 3 196.3 

1992 2 B In 3 166.3 

1992 2 B In 3 180.5 

1992 2 B In 3 140.5 

1992 2 B In 3 131.2 

1992 2 B In 3 118.5 

1992 2 B In 3 83.3 

1992 2 B In 3 173.2 

1992 2 B In 3 61.4 

1992 2 B In 3 163.3 

1992 2 B In 3 119 

1992 2 B In 3 95.3 

1992 2 B In 3 123.6 

1992 2 B In 3 183.1 

1992 2 B In 3 216.7 

1992 2 B In 3 105.1 

1992 2 B In 3 104.4 

1992 2 B In 3 97.9 

1992 2 B In 3 101.8 

      

1992 3 A In 1 150.6 

1992 3 A In 1 172.5 

1992 3 A In 1 136.4 

1992 3 A In 1 137.6 
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1992 3 A In 1 98.5 

1992 3 A In 1 124 

1992 3 A In 1 112.7 

1992 3 A In 1 101.1 

1992 3 A In 1 117.9 

1992 3 A In 1 109.3 

1992 3 A In 1 126.2 

1992 3 A In 1 110.7 

1992 3 A In 1 157.4 

      

1992 3 A In 6 186.6 

1992 3 A In 6 148.8 

1992 3 A In 6 209.7 

1992 3 A In 6 189 

1992 3 A In 6 131.6 

1992 3 A In 6 164.9 

1992 3 A In 6 227.2 

1992 3 A In 6 146.2 

1992 3 A In 6 179.2 

1992 3 A In 6 194.3 

1992 3 A In 6 168.1 

1992 3 A In 6 208.1 

1992 3 A In 6 173.4 

1992 3 A In 6 166.5 

1992 3 A In 6 153.5 

1992 3 A In 6 169.1 

1992 3 A In 6 138.4 

1992 3 A In 6 115.8 

1992 3 A In 6 143.6 

1992 3 A In 6 181.5 

      

1992 3 B In 6 125.2 

1992 3 B In 6 110.6 

1992 3 B In 6 116.7 

1992 3 B In 6 159.1 

1992 3 B In 6 183 

1992 3 B In 6 194.3 

1992 3 B In 6 147.3 

1992 3 B In 6 197.2 

1992 3 B In 6 157.4 

1992 3 B In 6 127.9 
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1992 3 B In 6 152 

1992 3 B In 6 142.5 

1992 3 B In 6 172.4 

1992 3 B In 6 191.5 

1992 3 B In 6 192 

1992 3 B In 6 139.4 

1992 3 B In 6 209.6 

1992 3 B In 6 176.4 

1992 3 B In 6 133 

1992 3 B In 6 206.3 

      

1992 3 B In 2 116.7 

1992 3 B In 2 137.5 

1992 3 B In 2 167.6 

1992 3 B In 2 175.6 

1992 3 B In 2 195.2 

1992 3 B In 2 153.4 

1992 3 B In 2 171.3 

1992 3 B In 2 152.3 

1992 3 B In 2 167.1 

1992 3 B In 2 153.5 

1992 3 B In 2 120.9 

1992 3 B In 2 174.1 

1992 3 B In 2 179.2 

1992 3 B In 2 172.4 

1992 3 B In 2 128.3 

1992 3 B In 2 198.2 

1992 3 B In 2 142 

1992 3 B In 2 133.4 

1992 3 B In 2 144.5 

1992 3 B In 2 133.3 

      

1992 4 A In 2 129 

1992 4 A In 2 204.5 

1992 4 A In 2 94.5 

1992 4 A In 2 154.5 

1992 4 A In 2 112.6 

1992 4 A In 2 171.8 

1992 4 A In 2 173.4 

1992 4 A In 2 184.7 

1992 4 A In 2 202.4 
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1992 4 A In 2 184.7 

1992 4 A In 2 147.5 

1992 4 A In 2 186.5 

1992 4 A In 2 173.3 

1992 4 A In 2 174.4 

1992 4 A In 2 132.6 

1992 4 A In 2 169.3 

1992 4 A In 2 145 

1992 4 A In 2 145.8 

1992 4 A In 2 194.9 

1992 4 A In 2 69 

      

1992 4 A In 6 116.8 

1992 4 A In 6 177.5 

1992 4 A In 6 143.2 

1992 4 A In 6 104.6 

1992 4 A In 6 111.5 

1992 4 A In 6 106.2 

1992 4 A In 6 101.1 

1992 4 A In 6 150.7 

1992 4 A In 6 113.3 

1992 4 A In 6 163.6 

1992 4 A In 6 112.3 

1992 4 A In 6 117.6 

1992 4 A In 6 117.8 

1992 4 A In 6 151 

1992 4 A In 6 105.1 

1992 4 A In 6 162.4 

1992 4 A In 6 156.4 

1992 4 A In 6 142.2 

1992 4 A In 6 102.9 

      

1992 4 B In 2 110.5 

1992 4 B In 2 150.5 

1992 4 B In 2 179.5 

1992 4 B In 2 131.7 

1992 4 B In 2 180.7 

1992 4 B In 2 163.5 

1992 4 B In 2 109.3 

1992 4 B In 2 125 

1992 4 B In 2 98.8 
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1992 4 B In 2 102.3 

1992 4 B In 2 172.3 

1992 4 B In 2 126 

1992 4 B In 2 157.7 

1992 4 B In 2 146.5 

1992 4 B In 2 120.8 

1992 4 B In 2 136.8 

1992 4 B In 2 151.5 

1992 4 B In 2 125.8 

1992 4 B In 2 161.4 

1992 4 B In 2 172.4 

      

1992 4 B In 5 105.4 

1992 4 B In 5 131 

1992 4 B In 5 196.2 

1992 4 B In 5 210 

1992 4 B In 5 126.9 

1992 4 B In 5 183.5 

1992 4 B In 5 189.9 

1992 4 B In 5 145.9 

1992 4 B In 5 178.4 

1992 4 B In 5 191.7 

1992 4 B In 5 99.1 

1992 4 B In 5 183.2 

1992 4 B In 5 158.3 

1992 4 B In 5 187.1 

1992 4 B In 5 137.6 

1992 4 B In 5 200.8 

1992 4 B In 5 125.3 

1992 4 B In 5 151.3 

1992 4 B In 5 128.2 

1992 4 B In 5 95 

      

2013 1 A In  68 

2013 1 A In  68 

2013 1 A In  63 

2013 1 A In  56 

2013 1 A In  51 

2013 1 A In  53 

2013 1 A In  19 

2013 1 A In  85 
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2013 1 A In  83 

2013 1 A In  61 

2013 1 A In  67 

2013 1 B In  N/A 

2013 2 A In  107 

2013 2 A In  91 

2013 2 A In  65 

2013 2 A In  81 

2013 2 A In  98 

2013 2 A In  89 

2013 2 A In  91 

2013 2 A In  92 

2013 2 A In  97 

2013 2 A In  96 

2013 2 A In  57 

2013 2 A In  89 

2013 2 A In  78 

2013 2 A In  120 

2013 2 A In  87 

2013 2 A In  86 

2013 2 A In  85 

2013 2 A In  103 

2013 2 A In  84 

2013 2 A In  60 

2013 2 B In  114 

2013 2 B In  97 

2013 2 B In  99 

2013 2 B In  97 

2013 2 B In  70 

2013 2 B In  97 

2013 2 B In  71 

2013 2 B In  93 

2013 2 B In  107 

2013 2 B In  93 

2013 2 B In  101 

2013 2 B In  108 

2013 2 B In  65 

2013 2 B In  66 

2013 2 B In  106 

2013 2 B In  108 

2013 2 B In  102 
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2013 2 B In  106 

2013 2 B In  89 

2013 2 B In  100 

2013 3 A In  132 

2013 3 A In  63 

2013 3 A In  107 

2013 3 A In  87 

2013 3 A In  112 

2013 3 A In  111 

2013 3 A In  103 

2013 3 A In  107 

2013 3 A In  126 

2013 3 A In  94 

2013 3 A In  129 

2013 3 A In  130 

2013 3 A In  140 

2013 3 A In  124 

2013 3 A In  72 

2013 3 A In  135 

2013 3 A In  149 

2013 3 A In  133 

2013 3 A In  71 

2013 3 A In  79 

2013 3 B In  93 

2013 3 B In  107 

2013 3 B In  91 

2013 3 B In  70 

2013 3 B In  82 

2013 3 B In  112 

2013 3 B In  118 

2013 3 B In  110 

2013 3 B In  82 

2013 3 B In  98 

2013 3 B In  107 

2013 3 B In  63 

2013 3 B In  59 

2013 3 B In  117 

2013 3 B In  104 

2013 3 B In  98 

2013 3 B In  81 

2013 3 B In  93 
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2013 3 B In  82 

2013 3 B In  96 

2013 4 A In  75 

2013 4 A In  73 

2013 4 A In  20 

2013 4 A In  77 

2013 4 A In  82 

2013 4 A In  71 

2013 4 A In  81 

2013 4 A In  82 

2013 4 A In  67 

2013 4 A In  90 

2013 4 A In  56 

2013 4 A In  46 

2013 4 A In  25 

2013 4 A In  90 

2013 4 A In  89 

2013 4 A In  26 

2013 4 A In  66 

2013 4 A In  45 

2013 4 A In  71 

2013 4 A In  76 

2013 4 B In  84 

2013 4 B In  88 

2013 4 B In  107 

2013 4 B In  75 

2013 4 B In  78 

2013 4 B In  102 

2013 4 B In  94 

2013 4 B In  86 

2013 4 B In  105 

2013 4 B In  27 

2013 4 B In  100 

2013 4 B In  76 

2013 4 B In  86 

2013 4 B In  79 

2013 4 B In  79 

2013 4 B In  85 

2013 4 B In  89 

2013 4 B In  100 

2013 4 B In  97 
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2013 4 B In  87 

      

2014 1 A In  96 

2014 1 A In  88 

2014 1 A In  78 

2014 1 A In  78 

2014 1 A In  90 

2014 1 A In  66 

2014 1 A In  67 

2014 1 A In  75 

2014 1 A In  76 

2014 1 A In  84 

2014 1 A In  99 

2014 1 A In  35 

2014 1 A In  52 

2014 1 A In  108 

2014 1 A In  54 

2014 1 A In  79 

2014 1 A In  38 

2014 1 A In  85 

2014 1 A In  87 

2014 1 A In  92 

2014 1 B In  69 

2014 1 B In  51 

2014 1 B In  66 

2014 1 B In  12 

2014 1 B In  30 

2014 1 B In  43 

2014 2 A In  108 

2014 2 A In  93 

2014 2 A In  85 

2014 2 A In  68 

2014 2 A In  77 

2014 2 A In  100 

2014 2 A In  115 

2014 2 A In  109 

2014 2 A In  25 

2014 2 A In  81 

2014 2 A In  105 

2014 2 A In  114 

2014 2 A In  70 
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2014 2 A In  108 

2014 2 A In  87 

2014 2 A In  91 

2014 2 A In  34 

2014 2 A In  92 

2014 2 A In  104 

2014 2 A In  79 

2014 2 B In  137 

2014 2 B In  122 

2014 2 B In  112 

2014 2 B In  87 

2014 2 B In  98 

2014 2 B In  56 

2014 2 B In  114 

2014 2 B In  38 

2014 2 B In  116 

2014 2 B In  92 

2014 2 B In  93 

2014 2 B In  110 

2014 2 B In  92 

2014 2 B In  101 

2014 2 B In  110 

2014 2 B In  110 

2014 2 B In  120 

2014 2 B In  60 

2014 2 B In  118 

2014 2 B In  44 

2014 3 A In  134 

2014 3 A In  128 

2014 3 A In  104 

2014 3 A In  114 

2014 3 A In  112 

2014 3 A In  133 

2014 3 A In  121 

2014 3 A In  35 

2014 3 A In  131 

2014 3 A In  112 

2014 3 A In  82 

2014 3 A In  119 

2014 3 A In  76 

2014 3 A In  112 
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2014 3 A In  134 

2014 3 A In  95 

2014 3 A In  108 

2014 3 A In  104 

2014 3 A In  116 

2014 3 A In  89 

2014 3 B In  128 

2014 3 B In  58 

2014 3 B In  115 

2014 3 B In  27 

2014 3 B In  110 

2014 3 B In  117 

2014 3 B In  120 

2014 3 B In  86 

2014 3 B In  74 

2014 3 B In  83 

2014 3 B In  114 

2014 3 B In  121 

2014 3 B In  93 

2014 3 B In  116 

2014 3 B In  107 

2014 3 B In  120 

2014 3 B In  111 

2014 3 B In  117 

2014 3 B In  115 

2014 3 B In  101 

2014 4 A In  106 

2014 4 A In  80 

2014 4 A In  82 

2014 4 A In  65 

2014 4 A In  63 

2014 4 A In  92 

2014 4 A In  73 

2014 4 A In  46 

2014 4 A In  82 

2014 4 A In  61 

2014 4 A In  101 

2014 4 A In  82 

2014 4 A In  57 

2014 4 A In  60 

2014 4 A In  80 
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2014 4 A In  47 

2014 4 A In  80 

2014 4 A In  97 

2014 4 A In  60 

2014 4 A In  80 

2014 4 B In  103 

2014 4 B In  100 

2014 4 B In  100 

2014 4 B In  82 

2014 4 B In  61 

2014 4 B In  71 

2014 4 B In  89 

2014 4 B In  95 

2014 4 B In  59 

2014 4 B In  52 

2014 4 B In  91 

2014 4 B In  107 

2014 4 B In  84 

2014 4 B In  98 

2014 4 B In  59 

2014 4 B In  97 

2014 4 B In  45 

2014 4 B In  106 

2014 4 B In  96 

2014 4 B In  94 
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APPENDIX I. WATER DEPTH DATA 

Month in 2014 Location Site In/Out Water Level Relative to Soil Surface (cm) 

May 1 A In 0.1016 

May 1 A Out -3.2004 

May 1 B In -5.1308 

May 1 B Out -6.8326 

May 2 A In 4.2164 

May 2 A Out 1.3462 

May 2 B In 4.4196 

May 2 B Out 3.048 

May 3 A In 4.826 

May 3 A Out 6.9596 

May 3 B In 2.413 

May 3 B Out -2.0574 

May 4 A In 1.016 

May 4 A Out -0.6604 

May 4 B In -2.1844 

May 4 B Out -4.2672 

June 1 A In 0.5334 

June 1 A Out -2.1336 

June 1 B In -2.667 

June 1 B Out -4.1656 

June 2 A In 1.5494 

June 2 A Out -0.889 

June 2 B In -2.1844 

June 2 B Out -1.8542 

June 3 A In -5.2578 

June 3 A Out 3.0226 

June 3 B In -0.254 

June 3 B Out -3.0226 

June 4 A In -7.1882 

June 4 A Out -9.8298 

June 4 B In -10.8204 

June 4 B Out -15.5702 

July 1 A In 2.1336 

July 1 A Out -1.6002 

July 1 B In -0.8636 

July 1 B Out -0.3302 

July 2 A In 3.4544 

July 2 A Out 0.508 

July 2 B In -1.1176 
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July 2 B Out -4.2672 

July 3 A In -7.2136 

July 3 A Out -2.8448 

July 3 B In -7.5184 

July 3 B Out -11.1252 

July 4 A In -3.7846 

July 4 A Out -3.7846 

July 4 B In -4.1148 

July 4 B Out -5.3848 

August 1 A In 5.9436 

August 1 A Out -0.4318 

August 1 B In -0.8636 

August 1 B Out -0.8636 

August 2 A In 6.1214 

August 2 A Out 0.6096 

August 2 B In 5.4864 

August 2 B Out 3.8862 

August 3 A In 2.286 

August 3 A Out 2.413 

August 3 B In 2.6162 

August 3 B Out -0.9906 

August 4 A In 4.4196 

August 4 A Out 0.508 

August 4 B In 3.1496 

August 4 B Out -2.667 

September  1 A In 2.3368 

September  1 A Out 0.2032 

September  1 B In -0.6604 

September  1 B Out -0.8636 

September  2 A In 4.953 

September  2 A Out 5.2832 

September  2 B In 4.4196 

September  2 B Out 5.4864 

September  3 A In 2.286 

September  3 A Out 1.8796 

September  3 B In 4.953 

September  3 B Out -2.6924 

September  4 A In 3.0226 

September  4 A Out 0.4064 

September  4 B In 0.6858 

September  4 B Out -2.4638 
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November 1 A In 3.81 

November 1 A Out 0.7366 

November 1 B In 0.2032 

November 1 B Out 0.7366 

November 2 A In 3.683 

November 2 A Out 4.953 

November 2 B In 7.493 

November 2 B Out 6.0198 

November 3 A In 1.7526 

November 3 A Out 8.2296 

November 3 B In 3.3528 

November 3 B Out -2.7432 

November 4 A In 1.8796 

November 4 A Out 1.4732 

November 4 B In 2.286 

November 4 B Out 0.4064 
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APPENDIX J. SALINITY DATA 

Month in 2014 Location Site In/Out Salinity (0/00) 

May 1 A In 15 

May 1 A Out 16 

May 1 B In 30 

May 1 B Out 29 

May 2 A In 15 

May 2 A Out 12 

May 2 B In 11 

May 2 B Out 8 

May 3 A In 10 

May 3 A Out 9 

May 3 B In 8 

May 3 B Out 6 

May 4 A In 20 

May 4 A Out 15 

May 4 B In 14 

May 4 B Out 16 

June 1 A In 14 

June 1 A Out 15 

June 1 B In 22 

June 1 B Out 24 

June 2 A In 13 

June 2 A Out 14 

June 2 B In 11 

June 2 B Out 10 

June 3 A In 14 

June 3 A Out 13 

June 3 B In 11 

June 3 B Out 9 

June 4 A In 27 

June 4 A Out 25 

June 4 B In 21 

June 4 B Out 19 

July 1 A In 22 

July 1 A Out 25 

July 1 B In 24 

July 1 B Out 30 

July 2 A In 24 

July 2 A Out 25 

July 2 B In 22 
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July 2 B Out 24 

July 3 A In 20 

July 3 A Out 20 

July 3 B In 15 

July 3 B Out 14 

July 4 A In 18 

July 4 A Out 17 

July 4 B In 19 

July 4 B Out 17 

August 1 A In 31 

August 1 A Out 29 

August 1 B In 30 

August 1 B Out 33 

August 2 A In 9 

August 2 A Out 10 

August 2 B In 5 

August 2 B Out 5 

August 3 A In 13 

August 3 A Out 17 

August 3 B In 8 

August 3 B Out 10 

August 4 A In 23 

August 4 A Out 24 

August 4 B In 16 

August 4 B Out 26 

September  1 A In 33 

September  1 A Out 33 

September  1 B In 31 

September  1 B Out 33 

September  2 A In 10 

September  2 A Out 9 

September  2 B In 6 

September  2 B Out 5 

September  3 A In 9 

September  3 A Out 8 

September  3 B In 14 

September  3 B Out 12 

September  4 A In 22 

September  4 A Out 28 

September  4 B In 20 

September  4 B Out 29 
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November 1 A In 36 

November 1 A Out 31 

November 1 B In 37 

November 1 B Out 36 

November 2 A In 15 

November 2 A Out 17 

November 2 B In 14 

November 2 B Out 15 

November 3 A In 15 

November 3 A Out 17 

November 3 B In 19 

November 3 B Out 18 

November 4 A In 33 

November 4 A Out 34 

November 4 B In 28 

November 4 B Out 35 
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APPENDIX K. SOIL BULK DENSITY DATA 

Year Location Site In/Out Density (g/cm³) 

1990 1 A In 0.263 

1990 1 A Out 0.292 

1990 1 B In 1.18 

1990 1 B Out 1.288 

1990 2 A In 0.212 

1990 2 A Out 0.152 

1990 2 B In 0.178 

1990 2 B Out 0.211 

1990 3 A In 0.171 

1990 3 A Out 0.094 

1990 3 B In N/A 

1990 3 B Out N/A 

1990 4 A In 0.245 

1990 4 A Out 0.09 

1990 4 B In 0.193 

1990 4 B Out 0.118 

1991 1 A In 0.259 

1991 1 A Out 0.255 

1991 1 B In 1.176 

1991 1 B Out 1.251 

1991 2 A In 0.147 

1991 2 A Out 0.151 

1991 2 B In 0.569 

1991 2 B Out 0.268 

1991 3 A In 0.142 

1991 3 A Out 0.124 

1991 3 B In 0.137 

1991 3 B Out 0.115 

1991 4 A In 0.253 

1991 4 A Out 1.298 

1991 4 B In 0.225 

1991 4 B Out 0.15 

1992 1 A In 0.416 

1992 1 A Out 0.292 

1992 1 B In 1.026 

1992 1 B Out 1.268 

1992 2 A In 0.133 

1992 2 A Out 0.153 

1992 2 B In 0.175 
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1992 2 B Out 0.185 

1992 3 A In 0.153 

1992 3 A Out 0.169 

1992 3 B In 0.135 

1992 3 B Out 0.103 

1992 4 A In 0.357 

1992 4 A Out 0.26 

1992 4 B In 0.188 

1992 4 B Out 0.175 

2014 1 A In 0.176 

2014 1 A Out 0.131 

2014 1 B In 0.953 

2014 1 B Out 0.744 

2014 2 A In 0.097 

2014 2 A Out 0.101 

2014 2 B In 0.117 

2014 2 B Out 0.137 

2014 3 A In 0.112 

2014 3 A Out 0.092 

2014 3 B In 0.099 

2014 3 B Out 0.104 

2014 4 A In 0.152 

2014 4 A Out 0.156 

2014 4 B In 0.203 

2014 4 B Out 0.135 
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APPENDIX L. MACRO-ORGANIC MATTER (MOM) DATA 

Year Location Site In/Out Sample MOM to 10 cm AF g/m² 

1990 1 A In 1 1405 

1990 1 A In 2 2907 

1990 1 A Out 1 4962 

1990 1 A Out 2 4263 

1990 1 B In 1 1255 

1990 1 B In 2 831 

1990 1 B In 3 1289 

1990 1 B Out 1 2197 

1990 1 B Out 2 2564 

1990 1 B Out 3 1570 

1990 2 A In 1 4834 

1990 2 A In 2 3312 

1990 2 A Out 1 5498 

1990 2 A Out 2 5093 

1990 2 B In 1 5766 

1990 2 B In 2 3896 

1990 2 B Out 1 4156 

1990 2 B Out 2 4501 

1990 3 A In 3 3548 

1990 3 A In 4 4402 

1990 3 A Out 4 4176 

1990 3 A Out 3 3187 

1990 3 B In 3 1476 

1990 3 B In 4 4576 

1990 3 B Out 3 3212 

1990 3 B Out 4 3323 

1990 4 A In 3 2130 

1990 4 A In 4 2931 

1990 4 A Out 3 2815 

1990 4 A Out 4 2456 

1990 4 B In 3 2224 

1990 4 B In 4 1921 

1990 4 B Out 3 2658 

1990 4 B Out 4 2646 

1991 1 A In 1 3061 

1991 1 A In 3 1839 

1991 1 A Out 1 5271 

1991 1 A Out 3 4233 

1991 1 B In 1 829 
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1991 1 B In  N/A 

1991 1 B Out 1 1665 

1991 1 B Out 3 3050 

1991 2 A In 1 3347 

1991 2 A In 3 2913 

1991 2 A Out 1 4400 

1991 2 A Out 3 3034 

1991 2 B In 1 5521 

1991 2 B In 3 3518 

1991 2 B Out 1 5379 

1991 2 B Out 3 5119 

1991 3 A In 1 2143 

1991 3 A In 3 2988 

1991 3 A Out 1 3253 

1991 3 A Out 3 3314 

1991 3 B In 1 3940 

1991 3 B In 3 4251 

1991 3 B Out 2 5441 

1991 3 B Out 3 4992 

1991 4 A In 1 3105 

1991 4 A In 3 2411 

1991 4 A Out 1 3128 

1991 4 A Out 3 3304 

1991 4 B In 1 2981 

1991 4 B In 3 3506 

1991 4 B Out 1 3947 

1991 4 B Out 3 3031 

1992 1 A In 1 2495 

1992 1 A Out 1 3942 

1992 1 B In 1 1177 

1992 1 B Out 1 1393 

1992 2 A In 1 3935 

1992 2 A Out 1 5261 

1992 2 B In 2 3445 

1992 2 B Out 1 5586 

1992 3 A In 1 3728 

1992 3 A Out 1 4321 

1992 3 B In 1 3632 

1992 3 B Out 1 5302 

1992 4 A In 1 3421 

1992 4 A Out 2 3398 
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1992 4 B In 1 2543 

1992 4 B Out 1 4001 

2014 1 A In 1 1415 

2014 1 A In 4 1867 

2014 1 A Out 2 4287 

2014 1 A Out 3 3599 

2014 1 B In 2 1024 

2014 1 B In 4 1450 

2014 1 B Out 1 3037 

2014 1 B Out 3 2616 

2014 2 A In 3 2833 

2014 2 A In 4 3840 

2014 2 A Out 2 4324 

2014 2 A Out 3 5483 

2014 2 B In 1 2843 

2014 2 B In 4 1709 

2014 2 B Out 1 6384 

2014 2 B Out 2 5128 

2014 3 A In 1 2492 

2014 3 A In 4 4708 

2014 3 A Out 3 2978 

2014 3 A Out 4 2817 

2014 3 B In 1 1604 

2014 3 B In 2 2484 

2014 3 B Out 2 4693 

2014 3 B Out 3 4171 

2014 4 A In 2 2793 

2014 4 A In 4 1861 

2014 4 A Out 2 4848 

2014 4 A Out 3 3916 

2014 4 B In 1 2325 

2014 4 B In 3 2147 

2014 4 B Out 2 5225 

2014 4 B Out 4 4448 
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