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ABSTRACT 
 

THE EFFECT OF NITROGEN FERTILIZATION ON SHORT-TERM 
FINE ROOT DYNAMICS IN A BARRIER ISLAND DUNE 

COMMUNITY. 
 

John Walter Hutton 
Old Dominion University, 2001 

Director: Dr. Frank P. Day 
 

 

Fine root dynamics are an important yet poorly understood component of 

terrestrial ecosystems.  In recent years a number of researchers have focused on fine root 

dynamics; their work has looked at patterns across one or multiple growing seasons on a 

scale of monthly measures.  The purpose of this study was to add to the overall 

understanding by looking at fine root dynamics on a shorter temporal scale.  

Minirhizotron observation tubes were used to assess the effect of nitrogen fertilization on 

short-term fine root dynamics in a nutrient limited, barrier island dune system. Root 

length elongation and mortality rates followed expected patterns with soil depth, with the 

highest values for both occurring in the upper 22 cm.  Unexpectedly, soil nutrient 

analyses did not confirm decreasing nitrogen levels with increasing depth although high 

variability suggests an inadequate sample size.  Total % nitrogen was significantly 

increased by the fertilization regime and corresponded to significantly higher root 

elongation and mortality rates.  However, mortality rates (0.61 mm cm-2 day-1) greatly 

exceeded root length elongation rates (0.18 mm cm-2 day-1) in both control and treatment 

plots.  These results support one of the two hypotheses summarized by Hendricks et al. 

(1993a), namely that fine root turnover rates increase with nitrogen availability. The 

effect of N fertilization was much more pronounced on mortality rates than on root length 



  
 
 

 

elongation rates.  This is suggestive of a belowground die back in response to nitrogen 

fertilization, perhaps associated with a shift in allocation to aboveground production.   
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?INTRODUCTION 
 
 

Barrier islands have long been known for their distinctive vegetation.  The grasses 

of the sand dunes, the wind-pruned appearance of the trees and the distinct zonation 

patterns of these systems have been the subject of much ecological research (Ehrenfeld 

1990).  These ecosystems are limited by a number of extreme environmental factors, such 

as salt spray, salt water, moving sand and poor soil (Ehrenfeld 1990).  Salt spray and salt 

water can be sources of stress and mortality to barrier island vegetation (Wells and Shunk 

1938).  However, spray may also constitute an input of nutrients, other than nitrogen and 

phosphorous, to these nutrient-limited systems (Van der Valk 1974).   

Other studies have confirmed nitrogen limitation in Virginia barrier island soils 

(Conn and Day 1992, Day 1996) as well as other coastal dune ecosystems (Kachi and 

Hirose 1983).  It has been suggested that this deficiency is a limiting factor for growth in 

most dune plant species (Kachi and Hirose 1983).  Various studies have found that the 

addition of nitrogen fertilizer to dune soils leads to increased total plant biomass (Day 

1996, Kachi and Hirose 1983, Willis 1965).  

As dune soils are made up primarily of sand, they generally have very low cation 

exchange capacities and therefore poor nutrient retention.  These soils are almost always 

very low in organic matter, nitrogen, phosphorous and potassium (Ehrenfeld 1990).  The 

low nitrogen status of barrier island sandy soils makes nitrogen availability easy to 

manipulate.  Also the sandy soils of the islands make root observation relatively easy, 

providing for an excellent environment in which to observe nutrient limited root  

                                                        
? Journal model is Plant and Soil. 
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dynamics (Weber and Day 1996). 

Studies in varied ecosystems have suggested that greater than one-half of net 

primary productivity is allocated belowground (Eissenstat and Yanni 1997, Fogel 1985,  

Grier et al. 1981).  In addition, carbon expended for root maintenance often exceeds that 

used for root production (Eissenstat and Yanni 1997).   Also, nutrient inputs to the soil 

from root systems can be equal to or greater than that of aboveground litterfall (Arthur 

and Fahey 1992, Vogt et al. 1986).  Thus, root production and turnover have direct 

consequences for carbon and nutrient cycling.  However, root system dynamics are a 

poorly understood aspect of terrestrial ecology due to the technical difficulties inherent in 

their study.  

Several researchers, in varied ecosystems, have observed either no change or a 

decrease in absolute root biomass as a result of nitrogen fertilization (Wilson and Tilman 

1991, Birk and Vitousek 1986, Bowman et al. 1993).  However, plants in nutrient poor 

environments tend to allocate proportionally more carbon to roots than shoots (Chapin 

1980, Gleeson and Tillman 1990, Vitousek and Sanford 1986).  It follows that a release 

from nutrient constraints would often lead to a decrease in root carbon allocation in 

proportion to shoot allocation.  While there may be a shift in proportional allocation, root 

production might still be stimulated by nutrient augmentation  as many studies have 

shown (Gleeson and Tillman 1990, Stevenson and Day 1996, Tilman and Wedin 1991).  

Hendricks et al. (1993) summarized two contrasting hypotheses concerning the 

effect of N availability on fine root carbon allocation.  The first suggests that relative fine 

root carbon allocation decreases and that longevity and turnover rates are not 

significantly affected by increasing N availability.  The second hypothesis maintains that 
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relative fine root carbon allocation remains constant and that fine root turnover rates 

increase with nitrogen availability.   

Weber and Day (1996) found that nitrogen fertilization resulted in increased root 

length density in a barrier island dune ecosystem.  Pregitzer et al. (1993) found that root 

longevity increased under high nutrient conditions in a forested ecosystem.  To date, little 

work has been done to determine the effect of nitrogen fertilization on short-term root 

length elongation and mortality rates. 

 Research on plant root systems in situ is technically difficult due to the fact that 

soil limits their accessibility for observation (McMichael and Taylor 1987).  A number of 

techniques have been developed to study root production and turnover: radio-tracer 

techniques (Dalhman 1968), the carbon budget method (Raich and Nadelhoffer 1989), 

the nitrogen budget method (Nadelhoffer et al. 1985), the ingrowth core method (Neill 

1992), sequential coring (Powell and Day 1991), the rhizotron chamber method (Bohm 

1979), and the minirhizotron method (Hendrick and Pregitzer 1992).  Of these, only the 

rhizotron and minirhizotron techniques offer non-destructive means of examining root 

dynamics.  The rhizotron method, however, has several distinct disadvantages.  First, 

since the conditions in the rhizotron are not completely natural, the results from 

experiments using this technique may differ substantially from those of field conditions 

(Cheng et al. 1991).  Second, construction costs for rhizotron facilities can be quite high 

(Cheng et al. 1991).  

Minirhizotrons are clear butyrate tubes that have been used in a number of 

ecosystems to videotape roots, in situ, for later analysis (Hendrick and Pregitzer 1992, 

1993b, 1996, Upchurch and Ritchie 1983, Weber and Day 1996).  However, one serious 
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limitation to this technology is the inability to measure biomass directly.  Several 

researchers are currently developing allometric equations to allow estimation of biomass 

with minirhizotrons (John Dilustro personal communication).  However, these 

relationships will most likely be system dependent. Soil coring must be done in 

conjunction with minirhizotron work to examine biomass along with other root dynamics.  

 The current study quantified the root length elongation and mortality rates of a 

barrier island dune community. The work was actually a subset of a long-term study that 

has examined root dynamics on multiple temporal scales. The original study began in 

1992 with an experiment examining fine root dynamics across a growing season using 

monthly tapings.  Tubes have since been taped on a twice-yearly basis.  The current study 

adds knowledge of fine-root dynamics on a smaller temporal scale.  The primary 

objective was to determine how short-term root dynamics are affected by nitrogen 

fertilization on a nutrient poor, barrier island dune ecosystem using minirhizotron 

observation tubes.  
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MATERIALS AND METHODS 
 
 

Site Description 

Hog Island (37o40’ N, 75o40’ W) is a barrier island off the eastern coast of the 

Delmarva Peninsula on the Virginia Coast Reserve (VCR) Long-Term Ecological 

Research (LTER) Site in Virginia, USA (Fig. 1).  This series of barrier islands is owned 

and managed by The Nature Conservancy.  Although a small community existed on the 

southern end, Hog Island has been largely uninhabited since the late 1940’s (Dueser et al. 

1976).  All cattle were removed from the island in 1980 (Hayden et al. 1991).   

Accretion on the north end of Hog Island has produced distinct dune complexes 

as well as a foredune area while the south end has been eroding  (Hayden et al. 1991).  

During 1995 and 1996, the north end of the island eroded but has since begun to widen 

again (John Porter, personal communication).  

From the Atlantic Ocean to the bayside of the island, a chronosequence of dunes 

has been aged, with formation dates ranging from 1871 to 1985 (Hayden et al. 1991).  

The present study was located on the well-drained, 1955 dune line that is bordered to the 

east by a freshwater marsh of Spartina patens Muhl. and Distichlis spicata (L.) Greene 

and to the west by thickets of  Myrica cerifera L. (Fig. 2).  The dominant plant 

communities on this ridge are the perennial grasses, Ammophila breviligulata Fern., 

Spartina patens Muhl. and Panicum amarum Ell. (Table 1).  The soil is a Newhan series 

within a Newhan-Corrolan complex that provides few nutrients and exhibits low nutrient 

and water retention (Duesser et al. 1976). 

 



 6
 
 
 

 

 

 

Fig. 1.  Map of Virginia Coast Reserve; research site is on Hog Island



 

 

 
 
 

 

 

 

 
 

Fig. 2. Diagam of the dune chronosequence on Hog Island; study plots are on the 1955 dune line
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Table 1.  Plant species in both fertilized and control plots ranked by mean % cover (data    
from two quarter meter square quadrats in each of 4 plots sampled per treatment 5/99).  
Ambr = Ammophila breviligulata Fernald, Paam = Panicum amarum Ell., Sppa = 
Spartina patens (Aiton) Muhl., Soca = Solanum carolinense L., Scsc = Schizachyrium 
scoparium (Mich.) Nash, Ruac = Rumex acetosella L., Casp = Carduus spinosissimus 
Walter. 
 
 
 Fertilized Plots    Unfertilized Plots 
 
Species  % Cover  Species  % Cover 
 
Ambr   83.75   Sppa   34.17 

Sppa   45.0   Scsc   14.17 

Ruac   16.88   Paam   12.5 

Paam   13.13   Ambr   7.5 

Scsc   0   Ruac   5.0 

Casp   0   Casp   2.5 

Soca   0   Soca   0.83 

___________________________________________________________

_________
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Sampling Design 

Eight 3 X 3 meter plots, spaced a minimum of six meters apart, were selected as 

representative of the dune ecosystem (Weber and Day 1996).  They were then randomly 

divided into four control and four experimental plots (Weber and Day 1996).  One of the 

control plots has since been removed from the study due to the effects of encroachment 

by Myrica cerifera (Weber and Day 1996).  Fertilized plots received three applications, 

during the first year of the study, of 15 g N m-2 in the form of a 70%-30% mix of coated 

temperature-release urea to uncoated urea (Weber and Day 1996).  Since that time, they 

have received 15 g N m-2 once per year in the middle of the growing season.  Four 

minirhizotron tubes were placed in each plot, perpendicular to and 1 meter from one of 

the adjacent sides (Fig. 3).  In an effort to reduce edge effect, tubes were oriented with the 

etched frames facing the center of the plots (Weber and Day 1996). 

  

Minirhizotrons 

The minirhizotron tubes are 2 m long, clear butyrate tubes with an inner diameter 

of 5.08 cm and 0.65 cm thick walls (Weber and Day 1996).  They have approximately 80 

etched frames along the side to allow taping at the same location within the tube on all 

sampling dates (Weber and Day 1996).  All tubes were painted with flat black paint to 

just below the soil surface, wrapped with black electrical tape, and capped with a PVC 

top to prevent rain and light entry (Weber and Day 1996).  Once prepared, they were 

installed in the soil at an angle of 45o. All tubes were installed between February 15 and 

29, 1992 (Weber and Day 1996).  They have since been used for monthly data collection 
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Fig. 3.  Installation of tubes within plots.  A minirhizotron camera is inserted  
into a tube. 
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in 1992 and twice-yearly observations over five years for a long-term study on the effects 

of nitrogen fertilization on root phenology. 

Each minirhizotron was measured once every 6 days from May 21, 1998 to June 

14, 1998, resulting in a total of 4 sampling intervals.  The minirhizotron images were 

collected on a hi-8 videotape recorder with a Bartz Technology microvideo camera. 

 

Image Analysis 

A subsample of the total frames was selected in a stratified random manner with 

an equal number of randomly selected frames within each of three depth classes.  During 

the first digitizing session, certain roots were selected non-randomly based upon their 

suitability for measuring root growth and mortality.  Roots were deemed suitable if the 

tip of a root could be clearly seen within the etched frame.  The individual roots within 

these frames were then followed through the course of the study. 

Root images were analyzed using ROOTS software (ver 1.05, Michigan State 

University Remote Sensing Laboratory).  Root length and average width were traced 

using a mouse and the measurements, along with the root coordinates and a numerical 

identifier, were then written to a database file by ROOTS. Roots were also classified by 

color as black, white, or dark although this information was not used in the analysis of the 

data. 

Roots could then be identified and re-measured by using ROOTS to recall and 

overlay the tracings and identifiers from an image at time t-1 when analyzing images at 

time t (Hendrick and Pregitzer 1993b). After digitizing was completed, the files created 
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by ROOTS were compiled into a single folder that was manipulated using Microsoft 

Foxpro (a database program). 

 

Root Length Elongation 

 Root length elongation rates were calculated as the length at time t+1 minus the 

length at time t when the length at time t+1 was greater than zero.  This included the 

change in length of all roots present at both time t and time t+1 as well as the length of 

new roots, or roots present at time t+1 but not at time t.   

 

Mortality 

 Mortality rates were calculated as the length at time t+1 minus the length at time t 

when the length at time t+1 was equal to zero.  This included the change in length of all 

roots that were present at time t but not at time t+1. 

 

Data Analysis 

 A log transformation was used to normalize the root length elongation and 

mortality rate data.  Tubes were nested in plots as in Hendrick and Pregitzer (1992).  

Frames were pooled into three roughly 20 cm vertical depth classes (0-22 cm, 22-46 cm, 

46-68 cm).  As depth class one was necessarily related to depth class two and depth class 

two to depth class three, depth was analyzed as a repeated measure.  Dates were also 

analyzed as a repeated measure for this study.  Thus, the  ANOVA model had plots 

nested within treatments and depth class and time as repeated measures.  Due to the 
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imbalance of the design (control plot 2 was removed), the data had to be analyzed using a 

general linear models procedure as opposed to a nested procedure (SAS Institute 1985). 

 

Soil Nutrient Analysis 

 Three 60 cm cores with 4 cm diameters were collected in each of the eight plots 

using a soil corer.  The full core was separated into three depth classes (0-20 cm, 20-40 

cm, 40-60 cm) with each depth class sample being placed into a separate labeled ziplock 

bag.  These depth increments were chosen to correspond to the depth classes used in the 

analysis of the minirhizotron data. 

 The bagged soil samples were then transported to the laboratory and refrigerated 

for two days prior to sample preparation.  Subsamples were taken from each sample 

using the cone and quarter method (Joseph Rule, personal communication) in order to 

best represent the whole sample.  This method involved mixing each sample thoroughly 

within the bag,  pouring the sample onto a clean surface in the shape of an inverted cone 

then taking one quarter of this cone as a representative subsample.   Subsamples were 

placed in labeled manilla envelopes and oven dried for 36 hours at 500C.  Time and 

temperature followed the methodology in Verardo et al. (1990) for analyzing sandy 

sediment samples for total N and C. 

 Dry samples were removed from the oven and ground to a fine homogenous 

consistency using a mortar and pestle.  The ground samples were placed in clean, labeled 

envelopes and set in a desicator.   

 Each subsample was analyzed for percent total N  using a Carlo Erba CHNS 

analyzer.  Sample analysis procedures followed the methodology in Cutter and Radford-
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Knoery (1991).  Due to the intrinsically low N content of depauperate dune sandy soils, it 

was necessary to use the largest sample mass possible while still achieving a complete 

burn.  After experimenting with several different sizes, I opted for a sample size of 

approximately 15 mg, which corresponds closely to the mass used by Verardo et al. 

(1990).  After the 15 mg sample was weighed in a tin capsule, approximately 10 mg of 

vanadium pentoxide was added to the top of the sample.  The capsule was then folded 

into a ball small enough to drop through the aperture into the combustion column of the 

CHNS analyzer. 
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RESULTS 
 
 

Root Length Elongation 

 The results showed the three main effects to be significant (Table 2). Values 

ranged from 0.47 mm cm-2 day-1 for the first time interval in the fertilized treatment to 

0.02 mm cm-2 day-1 for the final time interval in the control treatment (Fig. 4).  Variation 

was also much greater for the fertilized treatment group.  The main effect of depth was 

shown to be significant (F=17.05, p=0.0001).  Similar depth patterns of root length 

elongation can be seen in both treatments with the highest values occurring in the 0-22 

cm depth range. 

 Fig. 5 shows the pronounced effect of the fertilization treatment on root length 

elongation (F=8.34, p=0.0343).  Values averaged across depths by treatment ranged from 

0.35 mm cm-2 day-1 in the fertilized treatment to a low of 0.05 mm cm-2 day-1 in the 

control group.  While the main effect of date was also significant (F=4.74, p=0.0052), 

only the first and last dates differed significantly (Tukey’s, P < 0.05). 

 

Mortality 

 The results showed two main effects and one interaction to be significant (Table 

3).  Mortality rates for all depths and dates for both the fertilized and control treatments 

ranged from 1.8 mm cm-2 day-1 for the first time interval in the fertilized treatment to 

0.09 mm cm-2 day-1 for the third time interval in the control treatment (Fig. 6).  Depth 

was shown to have a significant effect on mortality rates (F=72.72, p=0.0001), with the 

highest values occurring in the 0-22 cm group.  The depth*treatment interaction was 
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Table 2.  Nested doubly repeated measures analysis of variance examining the effect of 
fertilization on root length elongation over time across three depth classes.  DF = Degrees 
of freedom, SS = Sum of squares, F Value = calculated F value, Adj Pr > F = 
Greenhouse-Geisser adjusted F value. 
 
Source of variation  DF   SS  Type III F value  Pr>F 
       MS  
 
Treatment   5 0.212  0.0424  8.336  0.0343 

Error    5 0.0255  0.0051 

 

Plot(Treatment)  5 0.0255  0.0051  2.464  0.0438 

Depth class   2 0.0352  0.0021  17.05    0.0001 

Date    3 0.0294  0.0098  4.741  0.0052 

Depth class*Date  6 0.0045  0.00075 0.363  0.8991 

Treatment*Depth class 2 0.0078  0.0039  1.91  0.1578 

Treatment*Date  3 0.0096  0.0032  1.547  0.2128 

Treatment*Date*Depth class 6 0.0027  0.00045 0.217  0.9697 

Error    83 0.3122  0.0021 
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Fig. 4.  Root length elongation (RLE) for fertilized and control treatments for 
 all three depth classes from 5/21/98 – 6/19/98 (Mean and standard error  
of the mean).
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Fig. 5.  Root length elongation (RLE) (change in length of roots from time t to time t+1) for fertilized and control
treatments with all depths pooled from 5/21/98 – 6/19/98 (Mean and standard error of the mean). 
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Table 3.  Nested doubly repeated measures analysis of variance examining the effect of 
fertilization on root mortality rates over time across three depth classes.  DF = Degrees of 
freedom, SS = Sum of squares, F Value = calculated F value, Adj Pr > F = Greenhouse-
Geisser adjusted F value. 
 
Source of variation  DF   SS  Type III F value  Pr>F 
       MS  
 
Treatment   1 8.4360  8.4360  36.7600 0.0018 

Error    5 1.1480  0.2295 

 

Plot(Treatment)  5 1.1480  0.2295  5.6690             0.0003 

Depth class   2 5.8880  2.9441  72.7200 0.0001 

Date    3 0.1767  0.0589  1.4540  0.2372 

Depth class*Date  6 0.0045  0.0229  0.5666  0.7551 

Treatment*Depth class 2 0.6130  0.3065  7.5710  0.0012 

Treatment*Date  3 0.1074  0.0358  0.8832  0.4555 

Treatment*Date*Depth class 6 0.0396  0.0066  0.1624  0.9856 

Error    55 2.2270  0.0405
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Fig. 6.  Mortality rates for fertilized and control treatments for all three depth  
classes from 5/21/98 – 6/19/98 (Mean and standard error of the mean).
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significant (F=7.57, p=0.0012).  The 22-46 cm depth class seems to have shown a greater 

response to the fertilization treatment than the other two depth classes (Fig. 6). 

Fig. 7 shows the pronounced effect of the fertilization treatment on mortality rates 

(F=36.76, p=0.0018).  Values averaged across depths by treatment ranged from 1.1 mm 

cm-2 day-1 in the fertilized treatment to a low of 0.25 mm cm-2 day-1 in the control group.  

 

Root Length Elongation vs. Mortality 
 

Mortality rates were greater than root length elongation rates for both the control and 

fertilized treatments.  Mortality rates, averaged across depths, ranged from 1.10 mm cm-2 

day-1 in the fertilized treatment to a low of 0.22 mm cm-2 day-1 in the control plots (Fig. 

8).  Root length elongation values, also averaged across depths, ranged from a high of 

only 0.38 mm cm-2 day-1 in the fertilized treatment to a low of 0.05 mm cm-2 day-1 in the 

control plots (Fig. 8).  Fig. 8 shows the much greater response of mortality rates to the 

fertilization treatment than that of root length elongation.  Mortality rates for the fertilized 

plots were approximately triple that of the control plots, whereas root length elongation 

rates less than doubled.  

 

Soil Nitrogen Analysis 

The results showed one main effect to be significant (Table 4).  Only the main 

effect of treatment was significant (F=8.17, p=0.0061).  The fertilized group had 

significantly higher nitrogen concentrations (mean=0.0145) than the control 

(mean=0.008).  Variability was high for both the control and fertilized plots (Fig. 9), 

possibly masking significant trends by depth.



 

 

 
 
 

 

Fig. 7.  Mortality rates for fertilized and control treatments with all depths pooled from 5/21/98 – 6/19/98 (Mean 
and standard error of the mean). 
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Fig. 8.  Root length elongation vs. mortality rates for fertilized and control  
treatments with all depths pooled from 5/21/98 – 6/19/98 (Mean and  
standard error of the mean). 
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Table 4.  Nested analysis of variance examining the effect of fertilization on % total 
nitrogen by mass across three depth classes.  DF = Degrees of freedom, SS = Sum of 
squares, F Value = calculated F value, Adj Pr > F = Greenhouse-Geisser adjusted F 
value. 
 
Source of variation  DF Type III Mean  F value  Pr>F 
      SS  square  
 
Treatment   1           0.000650 0.000650         8.170000      0.006100 

Plot(Treatment)  5 0.000780 0.000160 1.960000      0.100300 

Depth    2 0.000310 0.000150 1.910000      0.157700 

Depth*Treatment  2 0.000027 0.000014 0.170000      0.843600 

Error    52 0.0042 00 0.000080 
 

 
 
 
 
 
 
 



 

 

 
 
 

 

 
 
 

Fig. 9.  Percent total nitrogen by mass for fertilized and control treatments for all three depth classes.
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DISCUSSION 
 
 
Soil Nutrient Analysis 

Unexpectedly, soil analyses did not show any significant differences in % total 

nitrogen by depth.  However, Fig. 9 shows the high variability of these data.  It is 

possible that a small sample size resulted in high variability that overwhelmed what 

should have been significant differences.  In addition, the Carlo Erba analyzer may have 

been unable to precisely detect the low nitrogen levels inherent in sandy soils.  This could 

also have lead to the high variability seen in these data.  In another N-fertilization study 

at the same site, Day (1996) found greater nitrogen concentrations at shallower depths. 

 

Root Length Elongation 

 The observed patterns of root length elongation rates were consistent with the 

body of literature that supports the hypothesis summarized by Hendricks et al. (1993) 

namely that fine root turnover rates increase with nitrogen availability.  Root length 

elongation increased significantly due to the nitrogen fertilization regime.  The soil 

analysis confirmed that % total nitrogen was significantly greater in the fertilized plots 

(Table 5) and there exists an extensive base of evidence that plants respond to 

fertilization through increased root production and biomass (Nadelhoffer et al. 1985, 

Safford 1974, Tillman and Wedin 1991).  However, other researchers (Gower and 

Vitousek 1989, Vogt et al. 1987) have found conflicting results suggesting that fine root 

longevity and turnover rates are not significantly influenced by nitrogen availability. 
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The decrease in root length elongation with increasing depth was also expected.  

This is consistent with patterns of decreasing root elongation with depth found by a 

number of researchers in varied ecosystems (Hendrick and Pregitzer 1996, Weber and 

Day 1996) as well as decreasing total root biomass with increasing depth (Burke and 

Raynal 1994, Conn and Day 1993).  Also, despite the results of the soil analysis, it is 

known that fertilizer placement tends to result in localizing the supply of nutrients in the 

upper portions of the soil (Drew and Saker 1975).  A number of researchers have shown 

marked increases in the growth of lateral roots in response to localized nitrogen 

fertilization (Campbell and Grime 1989, Drew and Saker 1973, Gross et al. 1993, Hackett 

1972).  

 While the effect of date is seemingly inconsequential ecologically, this finding is 

of some interest as the Tukey test showed only the first and the last date intervals to differ 

significantly.  Precipitation for the year of the study was highest in May with a significant 

rainfall event occurring in the first interval of the study (Fig. 10).  The stimulation effect 

of irrigation on root production is well established in the literature (Eissenstat and Yanai 

1997).  It is possible that the decrease in rainfall and the concurrent loss of moisture from 

the system, led to the significantly lower RLE values for the last interval of the study. 

 

Mortality 

 The increase in mortality rates followed the expected trends in response to N 

fertilization.  Aber et al. (1985) found increased turnover with nitrogen augmentation in a 

wide variety of ecosystems.  Also, Gross et al. (1993) found increased mortality rates in 
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fertilized soil patches.  This result seems to support the hypothesis summarized in 

Eissenstat and Yanai (1997) for studies employing direct observation techniques that  

roots in nutrient stressed environments may benefit from longer lifespans and decreased 

turnover rates. 

Mortality rates were consistent with expected results along the depth profile.  

Hendrick and Pregitzer (1996) and Joslin and Henderson (1987) found the highest 

mortality rates in the upper 20 cm of soil in forested ecosystems.  As mentioned above, it 

is well established that the placement of fertilizer tends to result in localizing the supply 

of nutrients in the upper portions of the soil (Drew and Saker 1975).  The results of this 

study would support the findings of Gross et al. (1993), showing a significant increase in 

root mortality in fertilized patches. 

 The effect of the depth*treatment interaction was interesting.  The 22-46 cm 

depth class was affected more than the other two depth classes.  This result suggests that, 

through time, increased N is effectively stimulating root turnover at progressively greater 

depths.  It is possible that there is a system dependant limit to the effective depth of this 

phenomenon that should be examined in later studies. However, this result is not 

consistent with the long-term dataset.  In fact, the two deeper depth classes seem to be 

more closely related throughout the long-term study (Day and Hutton, unpublished data).  
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Fig. 10.  Total daily rainfall for the period of 5/21/98 to 6/19/98 and total monthly 
rainfall for 1998 from the Hog Island weather station. 
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Root Length Elongation vs. Mortality 

Mortality rates were consistently higher than root length elongation rates for the 

control group.  This was surprising for this point in the growing season.  The majority of 

belowground studies have shown positive production/mortality ratios for this period of 

the season in many varied ecosystem types (Burke and Raynal 1994, Hendrick and 

Pregitzer 1993a).  However, even more surprising was the magnitude of stimulation in 

mortality rates due to N augmentation.  The effect of N fertilization was much more 

pronounced on mortality rates than on root length elongation rates.  This is suggestive of 

a belowground die back in response to nitrogen fertilization, perhaps associated with a 

shift in allocation to aboveground production.   

Caution must be taken in interpreting these data.  This finding may be more an 

artifact of the methodology employed.  As mentioned earlier, roots were selected non-

randomly from frames based on the presence of visible root tips.  This was done under 

the assumption that only true root growth and/or dieback would be reflected by 

measuring these roots and any other root tips that entered the frames upon subsequent 

tapings.  However, this may have biased the experiment resulting in this unexpected 

finding.   

It is interesting that this trend was not reflected in the long-term dataset covering 

this whole growing season (Day and Hutton, unpublished data).  In fact, root length 

density for the control group actually increased.  This discrepancy may be due to the fact 

that the long-term dataset represents all roots within frames, whereas only select roots 

were analyzed in the short-term study.  
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The plots used in this study had been subjected to a N fertilization regime for 6 

years prior to the beginning of this study.  At this point, fine root dynamics would, 

presumably, be quite different from those at the onset of release from N availability 

constraints.  Further studies need to examine fine root dynamics on a short temporal scale 

in conjunction with the initial fertilization event.   
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CONCLUSION 

 

 The results of this study support the second of the two hypotheses set forth by 

Hendricks et al. (1993a), stating that, in response to nitrogen fertilization, relative fine 

root carbon allocation remains constant and fine root turnover rates increase with 

nitrogen availability.  Both fine root elongation and mortality responded to the nitrogen 

fertilization regime. However, the effect of nitrogen fertilization was much more 

pronounced on mortality rates than on root length elongation rates.  This is suggestive of 

a below ground die back in response to nitrogen fertilization, perhaps associated with a 

shift in allocation to aboveground production.  These findings are in contrast with the 

earlier findings of Weber and Day (1996) who observed decreased turnover with 

fertilization in the same plots. Further studies will be needed to elucidate the overall 

response of these nutrient limited plants to increased nitrogen availability. 
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